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1. Introduction

Numerical solutions of the parabolized Navier-

Stokes (PNS) equations have been used to obtain a

better understanding of the qualitative and quanti-

tative physical phenomena in steady supersonic and

hypersonic viscous flows. The noniterative numer-
ical schemes used to solve the PNS equations have

either required adjustment of solution-dependent

coefficients for capturing shocks or been inefficient

on vector supercomputers. The purpose of this

study is to develop and apply a numerical scheme

which (1) eliminates the need to make adjustments

for shock capturing and (2) efficiently utilizes vector

supercomputers for accurately solving the PNS equa-

tions for complicated hypersonic flow fields over re-

alistic vehicle configurations.

The subject of this study is a finite-difference,

two-stage, explicit, upwind algorithm for the direct

(noniterative) integration of the three-dimensional

PNS equations in a generalized coordinate system.

The advantages of this type of algorithm are that

1. The use of upwind flux approximations with

equation sets containing nonlinear hyperbolic

conservation laws, such as the pressure and
convection terms in the PNS equations, allows

shocks to be numerically captured without

artificial damping terms which the user must

adjust.

2. An explicit integration scheme provides an ex-

tremely efficient numerical method on vector

or parallel machines for solving systems of

equations because the dependent variables can

be explicitly updated using concurrent ma-

chine operations.

The new algorithm uses upwind approximations of
the numerical fluxes for the pressure and convection

terms obtained by combining flux-difference split-

tings (FDS) formed from the solution of an approxi-

mate Riemann problem (RP). The approximate RP
is solved by modifying the method developed by Roe

(1981) for steady supersonic flow of an ideal gas.
Roe's method was extended for use with the PNS

equations expressed in generalized coordinates and

with Vigneron, Rakich, and Tannehill's (1978) ap-

proximation of the streamwise pressure gradient. For

the three-dimensional PNS equations, both fully up-

wind and upwind-biased approximations of the pres-
sure and convection flux derivatives are used. The

upwind-biased flux approximation is formed by us-

ing an upwind flux approximation in the direction
normal to a shock wave and a central flux approxima-

tion in all other directions. The upwind-biased flux

approximation eliminates a loss of accuracy in the
numerical solution experienced in three-dimensional

flow when upwind flux approximations were used

in directions tangential to a shock wave whose tan-

gential velocity was negligible. The upwind fluxes

are used in a two-stage integration scheme that re-

duces to MacCormack's (1969) method when the

FDS terms are identically zero.

The PNS equations can be integrated (marched)

in space using either an iterative, a noniterative, or
a time relaxation scheme. Time relaxation schemes

retain the time-dependent terms and use time inte-

gration methods to obtain a steady state solution
at a streamwise location before advancing in space.

A noniterative method is usually preferable over ei-
ther a time relaxation or an iterative scheme since

the solution at a given streamwise station is obtained

directly. A noniterative method is important when

each integration step's cost is high. This study con-

siders only the noniterative schemes applied to the

PNS equations.

The conservation law form of the PNS equa-

tions is usually solved using refinements of the

finite-difference codes of Schiff and Steger (1979)

or Vigneron, Rakich, and Tannehill (1978). Both

codes use a noniterative, implicit, approximate-

factorization, finite-difference algorithm for integrat-

ing the thin-layer form of the PNS equations. These
algorithms are based on numerical schemes devel-

oped by McDonald and Briley (1975) and Beam and

Warming (1978). These numerical schemes use cen-

tral differences to approximate the spatial derivatives

of the fluxes. These implicit schemes also use recur-

sive operations which are generally more difficult to

apply efficiently on vector computers than are ex-

plicit schemes. Gielda and McRae (1986) took ad-

vantage of the high vectorizing efficiency of a mod-
ified form of MacCormack's (1969) method to solve

the PNS equations on a Cray 1 supercomputer. They
achieved total solution times that were competitive

with existing implicit algorithms for certain classes of

problems. Conventional central difference schemes

such as Beam and Warming's and MacCormack's

require manual adjustments of artificial damping
terms to maintain numerical stability and to elim-

inate nonphysical oscillations in the numerical solu-
tions around shock waves. Lawrence, Tannehill, and

Chaussee (1986, 1987) developed an implicit finite-
volume scheme for solving the PNS equations which

used upwind differencing of the convection terms in
areas of supersonic flow and standard central dif-

ferencing in subsonic regions. Central differencing

was used in the subsonic region because numerical

instabilities occurred when upwind differences were

used. The disadvantage of this approach is that
it is difficult to vectorize because of the difference



switchingand the implicit integration. Thefinite-
differenceupwindmethoddevelopedin this study
canbeusedthroughoutthe flowfield anddoesnot
requireanyspecialswitchingofdifferencesin thesub-
sonicregime.

This report presentsa new three-dimensional,
noniterativePNSsolverwhichcombinesthecompu-
tationalspeedandsecond-ordermarchingaccuracy
of a two-stageexplicit integrationschemewith the
robust featuresobtainedfrom upwindapproxima-
tionsoftheconvectionterms.Thenewalgorithmfor
solvingthe PNSequationshasthefollowingunique
features:

1. Useof upwindapproximationsof theconvec-
tion termsin thesubsonicregion

2. Applicationof atwo-stageintegrationscheme
with upwindflux-limitedapproximationsof
theconvectionfluxes

3. A cubicequationdefiningVigneron'ssplitting
coefficientin termsof thedependentvariables

4. Useof differentupwindflux approximations
in eachstageof the integrationalgorithm

Theoutlineof this studyis asfollows:in section2
thePNSequationsarederived;in section3theinte-
grationof hyperbolicconservationlawsin multistage
explicitschemesis investigatedandappliedto two-
and three-dimensionalPNSequations;and in sec-
tions4 and5 solutionsusingthe newalgorithmare
obtainedfor two-andthree-dimensionalflows.



2. Governing Equations

The design process for aerospace vehicles has been improved by using computational fluid

dynamic (CFD) computer codes to better understand the qualitative and quantitative physical

phenomena in the flow field. Future aerospace vehicles, such as the National Aero-Space Plane

(NASP), will cruise at hypersonic speeds. At these speeds, the shock waves and boundary

layers are merged over portions of the vehicle (fig. 2.1) and cannot be solved independently.

Ideally, one should solve the full Navier-Stokes (NS) equations. However, the memory and

speed requirements to obtain full NS solutions for a complete vehicle are beyond the capabilities

of modern supercomputers. The parabolized Navier-Stokes (PNS) equations approximate the

full NS equations and are more amenable to efficient numerical solution for steady hypersonic

flow problems. This efficiency arises from spatial rather than temporal integration. Spatial

integration reduces the problem by one dimension and thus provides a significant savings in

computer memory and time for a given case. PNS numerical solutions agree with NS numerical

solutions for steady supersonic and hypersonic viscous flow problems that do not have a strong

upstream influence from points downstream. In this section, the strong conservation law form

of the PNS equations is presented for use with a generalized coordinate system.

Shock wave
, _ Inviscid layer

Sh_c__._.._::_...:.:._..._._._....::....:._:..:_!_i_i_i<iii!iiiiiiiiiiiii:i:i:i:i:i:i:i:i:i:i:i:i:i*i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::.::::::::::::::::::J
....•..--:.:.!.-:?....:.:.!..-.?-:?.>:? ',i',i',iii' !!',!!i

....:-..".'.'.['.'Viscouslayer _:_`5_`[:)(:[[`;_._[[._:)._[_;[_.[.{[_:_J_::_::_?:_::_::_::_::_::::::_'_::::::::_::_._::_::_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:

Figure 2.1. Merged shock and viscous layers in a hypersonic flow.

2.1. Navier-Stokes Equations

The flow of a Newtonian fluid can be described by the NS equations, the continuity of mass

equation, and the energy equation. These equations expressed in Cartesian conservation law

form are

Ut + Ez + Fy + Gz = 0 (2.1)

where subscripts x, y, and z indicate partial differentiation with respect to Cartesian coordinates,

and subscript t with respect to time. The vectors are defined as

U = [p, pu, pv, pw, et]T

E Ei - Ev F = Fi - Fv G = Gi - Gv

Ei [pu, puu + p, puv, puw, (et + p)u] T

Ev [0, rxx, rxy, rxz, UTxx + vrxy + WTxz -- qx]T

F i [pv, pvu, pvv +p, pvw, (et +p)v] T

Fv [0, rxy, Vyy, ryz, U"rxy -1-v'ryy q- w'r'yz -- qy]T

G i [pw, pwu, pwv, pww + p, (et + p)w] T

7- TGv [0, rzz, ryz, rzz, Urzz + Vryz + w zz - qz]

(2.2)

The fluxes are separated into inviscid (subscript i) and viscous (subscript v) components and p

is the density; u, v, and w are Cartesian velocity components; et is total energy; p is pressure;
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r is viscous stress; and q is heat flux. The total energy is defined by

u2 + v 2 + w2)et=p e+ 2
(2.3)

where e is the internal energy. The variables have been nondimensionalized using the following

relationships:
t* X* y* Z* '1

t-- L / Voc x = -ff y = -_ z = -_

I

u* v* w* p* (2.4)
u=_-_ v=-_--_ w='_ P=P_c

p* T* e* #____*
p- pooU 2 T- Too e = -_ # = #oc

where T is temperature, # is viscosity, U is total velocity, L is a characteristic length, * denotes

dimensional quantity, and subscript _c represents dimensional reference conditions.

2.2. Generalized Transformation

The simulation of a steady supersonic or hypersonic flow field with a dominant flow direction

is the problem of interest here. The streamwise direction is defined as being aligned with the

_-axis. The crossflow plane is defined by the coordinates _ and ¢. Equations (2:1) and (2.2) are

now changed to a generalized coordinate system using the following transformation:

¢=¢(x,y,z) (2.5)

The indices i, j, k identify discrete points in the _, 7, ¢ computational coordinate system. The

transformation and the formulas for the metrics are given in appendix A.

2.3. Parabolized Navier-Stokes Equations

The PNS equations have evolved from the pioneering work of Rudman and Rubin (1968), who

derived and numerically solved a composite set of equations valid in both the inviscid and the

viscous region for steady supersonic and hypersonic flow. Researchers have used various forms

of composite equation sets to solve steady supersonic viscous flow problems. Common to each

of the equation sets is that M1 viscous stresses and heat fluxes in the streamwise direction are

dropped and the subsonic streamwise pressure gradient is modified or dropped. Each numerical

scheme obtains a solution at a given streamwise plane, by either time relaxation, iteration, or

direct solution, before proceeding forward in the streamwise direction to the next plane.

The PNS equations can be obtained from the transformed NS equations by assuming steady

flow and by neglecting the streamwise diffusion terms. The transformed PNS equations in strong
conservation law form are



wheresubscript_, rl, _ indicate partial differentiation with respect to the generalized coordinates

and J is the Jacobian of the transformation. The streamwise pressure gradient has been split

between the two vectors E* and P using the technique developed by Vigneron, Rakich, and

Tannehill (1978). The streamwise inviscid flux is split as

where

Ei = E* + P (2.7)

E*--[pu, puu + wp, puv, puw, (et + p)u] T

P = [0, (1- 0v)p, 0, 0, 0]T

The value of Vigneron's coefficient w varies from 0 to 1. The determination of w is covered in a

later section.

The shear stress and heat flux terms after the transformation and the parabolizing assump-

tions become

3_ [2(nxU,+ Cxuc)- (,Tyv_+ ¢_v¢)- (nzw_+ Czw¢)]Txx

= _e_ (,lyu_+ _yu_+ _xv_+ _v_)rzy

=_ (,_T.+ ¢_r¢)
qz (.y_ 1)MZReoorr

= _ [2(o_v,+ Cyv¢)- (Ox_.+ ¢x_¢)- (o_wo+ Cz_¢)]ruy

= _ (_,_ + CzU¢+ _ + ¢x_¢) (2.8)_xz

qy = _ (,yT, + ¢_T¢)k')'- ) oc oo

[2(,zW, + CzW¢) - (,xU, + Cxu¢) - (,yv, + ¢_v¢)]rzz

7_z

= --- _ (,zT, + CzT_)
qz (_/_ 1)MZ Reocr r

The Reynolds, Prandtl, and Mach numbers are denoted by Re, Pr, and M. The ratio of specific

heats is denoted by "_ and the viscosity is calculated using Sutherland's equation:

# = T3/_( 1+_Trof) (2.O)
\ T + Tre f

where
110.4 K

Tref -- Too

The perfect gas relationships are used to completely define the system of equations:

T- "/M2v (2.10)
P

Note that the equations presented here differ from those used by others (Chaussee et al. 1981)

in that the stress terms are retained in the flux vector E when the outer derivative is other

than _.
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2.4. Geometric Conservation Law

The second and third lines of equation (2.6) contain the geometric conservation law (GCL)

(Anderson, Tannehill, and Pletcher 1984) and metrics associated with returning the governing

equations to strong conservation law form. The sum of the metrics in the GCL equals zero when

they are analytically evaluated for the fuI1 NS equations. In a numerical scheme, the GCL terms

may or may not be zero depending on how the full NS equations are approximated and how

the equations and the metrics are differenced. Gielda and McRae (1986) have shown that for

MacCormack's (1969) method, the GCL terms are not zero for the PNS equation set (eq. (2.6))

for any combination of possible differencing of the metrics. This fact, which is true for all PNS

solvers, requires that the GCL terms be evaluated numerically as part of the integration scheme

to cancel nonphysical source terms.

2.5. Treatment of the Streamwise Pressure Gradient

In equation (2.6), the streamwise pressure gradient is split between the left and the right

side of the PNS equation using Vigneron's coefficient w. If one is interested in using a space

marching method for integrating the PNS equation set, then the inviscid eigenvalues have to be

real and the viscous eigenvalues have to be nonnegative and real. These conditions are true for

supersonic flow. A linear stability analysis by Vigneron, Rakich, and Tannehill (1978) (and later

extended by Davis, Barnett, and Rakich 1986) shows that the inviscid eigenvalues are real and

the viscous eigenvalues are real and nonnegative for subsonic flow if a fraction of the streamwise

pressure gradient is retained. This fraction is obtained by defining _ as

1 (M_ > 1)
I+(?-I)M_ (/_I_ < 1)

(2.11)

where the axial Mach number is denoted by M_. The coefficient w has to be applied with a

safety factor a:

w = min(1, a_) (2.12)

so that the eigenvalues of the inviscid PNS equation set are real and the equations are hyperbolic.

The effect of a on _ is shown in figure 2.2.

When a is less than 1, the source term P physically represents the mechanism which would

allow for upstream propagation of information (Davis, Barnett, and Rakich 1986). Lubard and

Helliwell (1974) have shown that when P is included in a finite-difference method as part of a

backward difference, the method is unstable for small marching step sizes. If the source term

P is dropped, the finite-difference method is stable up to the allowable marching step size for

the numerical scheme. Therefore, the vector P on the right side of equation (2.6) is dropped

in numerical calculations. Davis, Barnett, and Rakich (1986) demonstrated that this is a good

approximation for a high Mach number, weakly interacting flow. However, the source term P

can be included as a forward difference with a global iteration method (Davis, Barnett, and

Rakich 1986) for calculating strongly interacting flows after one pass has been made to establish

an initial pressure distribution.
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Figure 2.2. Effect of safety factor a on Vigneron's coefficient w.

In equation (2.6), w is included in the differential with respect to _. Once the vector P is

dropped in the numerical scheme, there is no longer conservation of the streamwise momentum

(neglecting the streamwise viscous terms) in the subsonic region. Care has to be taken when

integrating E* so that any variation of w is canceled out in the streamwise ({) direction. If the

variation of w is not canceled out, a nonphysical acceleration occurs in the subsonic streamwise

direction which affects the accuracy of the PNS solution as an approximation to the full NS

solution. 1 The pressure derivative in the streamwise direction after the vector P has been

dropped can be expressed as

(x _fpw( (2.13)= 7wp_ +

The last term on the right side has to be canceled out to eliminate the nonphysical accelerations

caused by the variation of w. Since a_ is directly related to the streamwise Mach number, different

solutions can be obtained for the same problem using slightly different numerical grids if the

last term is not canceled out, by subtracting its value at the previous solution station from the

numerical solution.

2.6. PNS Equations for Use With a Single Pass Method

The equation solved by a single pass space marching method can be obtained from

equation (2.6) by dropping the vector P, shifting all the crossflow flux derivatives to the right

1 The author would like to acknowledge J. H. Morrison, Analytical Services & Materials, Inc. (Hampton, Va.) for

discovery of this nonphysical acceleration from the variation of w.



side, and adding a correction to cancel out any variation of ca in the streamwise direction:

where

= _zG_
\--j-j¢ ---j-+ j J_ J J¢

_'_ = [0, ca, 0, 0, 01T (2.15)

The last term contains a vector n( which is added to cancel out any variation of ca in the

streamwise direction when the source term P is dropped. The PNS equations described by

equation (2.14) are a mixed set of hyperbolic-parabolic partial differential equations in (-space.

Given that boundary conditions are known for E* on an r_-¢ surface and that appropriate initial

conditions are known on a surface for ( = 0, the system of equations can be space marched

(integrated) in the (-direction.

2.7. Defining ca for Decoding E*

The primitive flow variables are used in the definition of the fluxes and to display and analyze

the solution. The primitive flow variables have to be defined in terms of the dependent variable

E*. Previously, numerical schemes used with the conservative form of the PNS equations have

required that a change of variables be made from E*, to eliminate the difficulty of decoding

E* to obtain the primitive flow variables. This difficulty had to do with choosing the sign on

the square-root function used for determining the streamwise velocity with the steady form of

Euler's equations when the flow changes from supersonic to subsonic. Gielda and McRae (1986)

eliminated tliis _roblem by using Vigneron's coefficient ca so that the sign does not change on
the square-root function when the flow becomes subsonic. They defined the primitive variables

in terms of E* and _ as

E*--[pu, puu+cap, puv, puw, (et+ p)u]T=[E'_, E_, E_, E_, E_] T (2.16)

E_ E_l -b + _ - 4ac
V= -- W-- U:

Et E; 2a

so that

p-- p--
tt

where

1 -3'E_ w("/- 1)[E_ 1 )]] c=[24- ( -1)lLEr 2(v +J

(2.17)

The value of _ must be known before the flow variables are computed from equations (2.16)

and (2.17). Gielda and McRae lagged ca in their numerical scheme by defining it as a function

of the primitive flow variables from the previous decoding of E*.

8



A differentapproachwastakenin this study by definingw in terms of E* and determining

it before decoding. This results in a cubic function defining w in terms of E*:

w3 2(1 -t-a)_w 2 + [(1 -I-o')272 + A] 2Aa_/
7 - 1 (_ _ 1)2 w (_, _ 1)_ - 0 (2.18)

where
21_,* 2

A-- r _2
2E;E - -

The value of w can be determined either by solving the cubic exactly or by using Newton-

Raphson iteration. The advantage of solving for w from E* is that it allows a larger space

marching step size in practice, especially when starting from free-stream or approximate initial

conditions.

9



3. Integration Method

Theobjectiveof this study is to developa singlepassspacemarchingnumericalschemefor
integratingtheparabolizedNavier-Stokes(PNS)equationswhichusesupwindapproximations
for the convectionterms,is second-orderaccurate,andcanbeexecutedwith vectoroperations.
In this sectionthe followingtopicsarediscussed:an upwindapproximationof the convection
termsusingthe solutionof an approximateRiemannproblem(RP), the useof upwind flux
approximationsin multistageexplicit integrationschemeswhichhavesecond-orderaccuracy
and,finally,a finite-differenceupwindalgorithmwhichcanbeusedto integrateequation(2.14).

3.1. Selecting an Upwind Scheme for the PNS Equations

Upwind numerical schemes have recently become popular for solving nonlinear, hyperbolic,

partial differential equations in conservation law form. First-order upwind approximations of the

flux derivatives are used to eliminate numerical oscillations associated with solutions containing

discontinuities. This section reviews methods for determining an upwind approximation for the

purpose of selecting a method for use with the PNS convection terms in an explicit integration

algorithm.

An upwind scheme applicable to the steady form of Euler's equations would be applicable

to the PNS equations if a modification is made in the subsonic region to handle the splitting of

the streamwise pressure gradient with Vigneron, Rakich, and Tannehill's approximation. For

supersonic flow, the steady form of Euler's equations is identical to the convective terms of the

PNS equations. The steady form of Euier's equations has hyperbolic character for supersonic

flow and has a more complicated set of eigenvalues and eigenvectors than the unsteady form.

Most previous applications of upwind schemes have been to the unsteady, conservative form of

Euler's equations.

The characteristics of the PNS convection terms in (-7/ space can be examined by first

determining the high Reynolds number limit (i/Re _ 0) form of equation (2.5) and dropping

the geometric conservation law (GCL) and source terms:

+ = o u*(0,,) = u;(,)

E* = _E* Hi _- _lxEi 'F 71yFi H-qzGiJ

(3.1)

The system of equations is hyperbolic since the Jacobian matrix A is

A- OFi
OE-* (3.2)

has real eigenvalues when a < 1. Equation (3.1) represents an initial-value problem for a

system of nonlinear hyperbolic conservation laws where the dependent variable E*(_,7/) is a

vector and F is a vector-valued nonlinear function of E*. Solutions of equation (3.1) for a

given set of initial conditions may contain or develop discontinuities of the dependent variable.

These "weak solutions" of Euler's equations physically represent shock waves or contact surfaces

occurring in the flow. Nonphysical weak solutions, called expansion shocks, can also be solutions

to equation (3.1). The physical solution obeys an entropy condition and is a solution to the

viscous equations in the limit as c _ 0:

E_ + Fi,_ = EE_T_ (e > 0) (3.3)

i0



Thecorrectphysicalsolutionshouldbepredictedby solvingthePNSequationssincetheright
sideof equation(3.3) is approximatedby usingthe physicalviscousstressesandheatfluxes.

Thesemidiscreteformofequation(3.1)is obtainedbyapproximatingtheflux onanumerical
grid in the_?-direction:

| J+_ j-_ = 0 (3.4)

A first-order upwind approximation of a flux f for a scalar equation at the j + _ point can be

determined simply by investigating the sign of ,k, the eigenvalue (or wave speed):

fj+½ = { fj (A>0)} (3.5)yj+ < 0)

For a system of equations where there can be )_'s of mixed sign, the upwind flux approximation

is determined from a splitting of either the flux vectors (FVS) or flux differences (FDS). (See

summary in Chakravarthy 1987.) Both the FDS and the FVS approach can be used to separate
the flux into contributions which can be associated with either the positive or the negative ,Vs.

The FVS approach is used in the schemes of Steger and Warming (1981) and Van Leer (1982)

for the unsteady Euler equations. The flux vector is split into two new vectors which have either

all negative or all positive ),'s. A forward or backward difference is applied to the split vectors

based on the sign of the A's to obtain an upwind algorithm. Steger and Warming's method

is based on a homogeneous property of the Euler equations which does not apply to the PNS

equations as modified by the splitting of the streamwise pressure gradient.

The FDS approach is based on information about the evolution of the flow field obtained from

the localized Riemann solutions between adjacent grid cells. A characteristic decomposition of

the system of equations defined in the initial-value problem (eq. (3.1)) is made and a Riemann

problem (RP) is formulated. The initial data for E* are assumed to be piecewise constant

between points (fig. 3.1). An interface is assumed to exist between the two points at the symbolic

location of j + ½. The discontinuous initial data for the initial-value problem define the RP. Since

E* is a vector and Fi is a nonlinear vector, the solution of the RP involves nonlinear algebraic

equations and logical conditions for determining whether the solution contains a shock wave

or a smooth expansion. A RP is solved to determine the evolution of the interface in f-space

and the intermediate values of E*. The solution of the RP (for steady flow of a supersonic gas)

contains four constant states of E*, separated by five waves evolving from the interface (fig. 3.2).

Each wave is associated with a ,k of the Jacobian matrix A. The waves can represent a shock

wave, a rarefaction fan, or a contact surface. Once the intermediate values of E* are known,
the flux difference across a wave can be determined. The flux difference across a wave with a

positive A is considered a positive flux difference and the flux difference across a wave with a

negative ), is considered a negative flux difference. The positive flux differences are used as part

of a backward approximation of the flux derivative, and the negative flux differences are used

as part of a forward approximation of the flux derivative.
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Figure 3.1. Initial data distribution between adjacent points.
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Figure 3.2. Riemann problem solution.

Godunov (1960) developed the first upwind scheme for the unsteady, conservative form of

Euler's equations. This scheme was based on an exact solution of the RP. The exact solution

to the RP is expensive to compute since it requires an iteration process. Osher and Solomon

(1982), Pandolfi (1984), Roe (1981), and others have proposed approximate RP solvers for the

unsteady Euler equations. Roe (1981) and Pandolfi (1985) have developed schemes for steady

supersonic flow using the steady form of Euler's equations. Pandolfi's schemes are limited

to Euler's equations, while Roe's scheme is applicable to any hyperbolic equation set that

12



has unique eigenvectors. Roe's method has been applied to the PNS equation set in areas of

supersonic flow by Lawrence, Tannehill, and Chaussee (1986, 1987). They found that applying

the upwind scheme in the subsonic region where the streamwise pressure gradient was split was

"detrimental to both the stability and accuracy of the algorithm." They used a noniterative

implicit integration scheme and made a change of variables so that the equations were solved

in U-space instead of E*-space. For the three-dimensional PNS equations, Lawrence, Chaussee,

and Tannehill (1987) used the eigenvectors and eigenvalues for Euler's equations expressed in a
rotated Cartesian coordinate system for solving the approximate RP in U-space. A modification

detailed below of Roe's scheme for use with the three-dimensional PNS equations expressed in

a generalized coordinate system can be applied for solving the approximate RP in E*-space.

This modification eliminates the problem experienced by Lawrence, Chaussee, and Tannehill

(1987) and enables the scheme to be used throughout the flow field, including locations where

the streamwise pressure gradient is split.

3.2. Application of an Approximate Riemann Solver to the PNS Equations

Roe's (1981) method is based on solving an approximate RP exactly. The solution of the

RP is used in a numerical scheme to obtain a splitting of the flux differences in the crossflow

directions. Consider a discrete grid of _j points in the rl-direction. An exact solution is sought

for the following approximate equation (for the convection terms of the PNS equations) between

the points j and j + 1:

with initial conditions,

+ = o

{^,E*(0, r/) = Ej+I

E;

(3.6)

(,7>J+

where ._ is a constant matrix (based on local conditions). The discrete matrix ._ is formed

using specialized square-root averaging of the primitive flow variables at points j and j + 1 so

that conservation properties are maintained. The ^ variables are formed using a locally constant

value of the streamwise splitting coefficient w. The matrix A evaluated at the interface location

(j+l) is formed from

^ o + + (3.7)

The matrix A has the following conservative property if it is evaluated using specialized square-

root-averaged variables (Roe, 1981):

Fj+ 1 - Fj : Aj+½ (-j)J+½ (E_+I - E;)
(3.8)

where
r/x r/y r/z

Fk = (-j)j+½ Elk + (-j)j+½ Fik + (-j)j+½ Gik

and where k isa dummy index forj or j + l and the metricsare held constant.For the PNS

equations,recallthatE* has been modifiedto includeonly a fractionofthe streamwisepressure

gradientinthe subsonicregion.The allowableamount ofthe streamwisepressuregradientcan

change rapidlyin the 7?-direction.This variationof w was eliminatedin the projectionof _3"

13



into F in the definition of the RP between points j and j + 1 by defining E* using a locally
constant value of w:

Ek= pu, pu2+_+½p, puv, puw, (et+ p)u (3.9)

This modification was necessary to eliminate the problem experienced by Lawrence, Tannehill,

and Chaussee (1986, 1987) in the subsonic region. The requirement of using a fixed value of

for the RP increases the difficulty of using an implicit integration scheme when w ¢ 1 (subsonic

region). This is because the E* at point j in the RP defined at j + _ is not equal to the F,* at
1

point j defined in the RP at point j - _ because of the different values of w used at the j +
points.

The objective of solving the RP between points j and j + 1 is to split the flux difference in

equation (3.8) into five parts, one for each eigenvalue, which can be associated with either the

positive or the negative eigenvalues. Roe's method for solving the RP consists of first calculating

the square-root-averaged variables for the interface at j + _. The eigenvalues A and eigenvectors

of the Jacobian matrix ._, and the wave strengths a are calculated with the square-root-

averaged variables using the equations given in appendix B. The wave strengths are defined

as

rn=l

The flux difference across the mth wave is Amo_me m. The sum of the flux difference across all

the waves is equal to the difference of the flux between points j and j + 1.

5

E (Am°Imem)j+½ = Fj+I - Fj (3.11)
rn=l

The total flux difference between points j and j + 1 can now be split into the total positive (df +)

and negative (df-) flux differences. The df + and dr- vectors are calculated from

Fj+I-Fj=d f+ 1 + -j+_ df_+½ (3.12)

where

5 Am- lAml( m m)j+½ (3.13)df+ 1 = E Am + IAml (Olm6m)j+ df- 1 -_J+_ 2 ½ j+_
m=l rn=l

The eigenvalues and eigenvectors for the three-dimensional inviscid PNS equations in generalized

coordinates were determined in part using the symbolic manipulation language MACSYMA. The

vectors df + and df- are used as the building blocks for obtaining an upwind flux approximation

at the j + ½ point.

3.3. Upwind Flux Approximations

A first-order upwind flux approximation at j + _ can be obtained by modifying either a

forward, a backward, or a central flux approximation with FDS determined from the solution

of the RP:

{ Fij+l - df;+½

-- Fi. + df- 1
= J j+_ (3.14)
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A numericalschemethat usesa first-orderupwindapproximationof the flux hasthe advantage
ofresolvingdiscontinuitieswithout spuriousoscillations.Unfortunately,thedissipationinherent
in the first-orderupwindschememakesit impracticalfor globaluse. In practice,second-and
higher-orderflux approximationsareusedwith numericalschemesto minimizetruncationerrors.
Thehigher-orderfluxapproximationcannotresolveadiscontinuitysuchasashockwavewithout
an overshootor undershoot.The oscillationsarounda shockwaveare minimizedeither by
addingadditionaldissipationto the numericalschemeor by modifyingthe flux approximation
with a flux limiter.

The classicalwayof minimizingtheoscillationsis to useadditionaldissipation.Dissipation
is addedto thenumericalschemeby includingeitherasecond-ora fourth-orderderivativeof the
dependentvariablemultipliedby auser-specifiedconstant.Thedisadvantagesof thisprocedure
aredeterminingthe bestvaluefor theconstantandaddinga nonphysicalstressliketerm to the
equationset that is beingsolved.

Anotherapproachis to usea nonlinearmethodto changeor "limit" the higher-orderflux
approximationto first-order in the neighborhoodof a discontinuityto eliminate numerical
oscillations(fig. 3.3). A second-orderupwind approximationof the flux usingflux limiters
is

Fi3+½ = Hi+½ +

The flux differences designated with an overbar are treated with the minmod flux limiter.

dfj_ ½ minmod df;_

df%-+3 = minmod (df73 /3df}-+½)
\ 9+2'

(3.16)

The minmod flux limiter is defined as

minmod(x, y) = sign(x) max {0, min [Ixl, y sign(x)]} (3.17)

The minmod function limits the overbar flux differences to a first-order approximation around

captured shocks in order to minimize oscillations. The parameter/3 varies slightly for different

flux approximations. For second-order upwind flux approximations, /3 has a maximum value

of 2 for obtaining oscillation-free shock capturing. The advantage of the nonlinear flux limiter

is that oscillation-free results can be obtained without adding artificial stresses to the numerical

scheme. Different types of flux Iimiters are in use and the reader is referred to the work of Sweby

(1984) for more information.
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Figure 3.3. Comparison of unlimited and flux-limited shock capturing with a second-order flux approximation.

3.4. Second-Order Explicit Upwind Integration Method

First- and second-order upwind flux approximations for the PNS inviscid equations in

_-_ space were defined in the previous sections. This section presents the integration of the

initial-value problem described by equation (3.1) Using a method that incorporates upwind flux

approximations and is globally second-order accurate. The flux approximations in MacCor-

mack's (1969) scheme are modified to obtain a flux-limited version of Warming and Beam's

(1975) second-order explicit upwind scheme.

MacCormack's (1969) method is a two-stage explicit scheme that has been used extensively

for solving the Euler, full Navier-Stokes, and, recently by Gielda and McRae (1986), the PNS

equation s. The one-sided inviscid flux approximations used in MacCormack's method are

modified With the FDS obtained from the Solution of the RP. The resulting unlimited form

of the algorithm is similar to the Warming and Beam upwind (WBU) algorithm. The WBU

scheme has twice the linear stability limit of MacCormack's. The larger integration step size

of the WBU scheme compensates for some of the additional cost of determining the solution to

the RP's. The MacCormack and WBU schemes are classified as Lax and Wendroff (1960) type

schemes.

Second-order and higher integration schemes for solving initial-value, boundary-value prob-

lems are derived using either the fully discrete method of Lax and Wendroff (1960) or the

semidiscret¢ method of lines. The Lax-Wendroff scheme is a finite-difference method that is

derived by satisfying a Taylor series expansion about the solution point. The derivatives with

respect to the independent variable of expansion are replaced with the original partial differen-

tial equation. Another way to integrate the equation set is the method-of-lines approximation.

The first step in the method-of-lines procedure is to express the partial differential equation

in semidiscrete form. The remaining partial derivatives are treated numerically as ordinary

differential equations. Two- and three-dimensional problems with source terms can be easily
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handled,andany appropriateordinarydifferentialequationsolvercanbeusedto performthe
integration.

Themethod-of-linesprocedurecanbemodifiedfor determininga numericalschemeequiva-
lent to theMacCormackandWBU schemes.First applyasecond-ordermodifiedEulermethod,
alsocalledHeun'smethod(Gear1971),to the initial-valueproblemexpressedin semidiscrete
form (eq.(3.4)):

_,(,) _,(o) _  io) )Ej =Ej _ \ _J+½ i-3

Ej i_ \ *j+½ *j-½/ i_-r] \ _j+½ *j-½

(3.18a)

(3.18b)

where the superscript represents the stage of evaluation and (0) represents the initial value. The

method-of-lines procedure guarantees a global second-order scheme when the midpoint fluxes

are approximated with the same second-order flux approximations in each stage. Equivalent

Lax-Wendroff methods can be formulated if different types of flux approximations are used in the

different stages. The accuracy of the method must be checked when different flux approximations

are used unless the scheme is a known Lax-Wendroff method.

MacCormack's scheme is obtained using one-sided flux approximations:

Stage 1 _!0) = _!0) ]_j+½ _J

Stage 2 _!0) = _!0) _!1) = _!1)
,j+ ½ zj *j+½ *j+l

(3.19)

Substituting for the flux differencing evaluated at level (0) in the second stage (eq. (3.18b))

with the first stage equation (eq. (3.18a)) results in the traditional form of the second stage of

MacCormack's algorithm:

= i5 '5-1j

_,(2) l r=,(o) _,(1) A, (Fgi) /Ej _ [_j + Ej 57 \ zj+l U/J

(3.20)

The upwind scheme is obtained by adding FDS to the one-sided flux approximations:

Stage 1

Stage 2

_!0) = _!0) df-(0) ]*j+½ U ÷ j+:_

_j+½ 5 j+_ '2 \ -: J+_ /

_g') _1) __ de+(1) ÷ 1 (_;(0) __-__(o3)" _

*j+½ 5+1 j+_ 2 \ -_ J+7]

(3.21)

The flux approximations used in stage 2 differ from those in stage 1 and contain terms evaluated

at both levels. The numerical fluxes approximate the flux at a particular point in space, which

may differ from stage to stage. The flux definitions in stage 2 are not unique. For example,

all the terms evaluated at (0) could be placed together. The above form was preferred since

it represented a second-order discrete approximation of the flux in r]-space. Different flux

approximations used in different stages of Runge-Kutta integration schemes have been used
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in developingthe third-orderschemesof Rusanov(1970)andBursteinand Mirin (1970).The
traditionalformof thesecondstageof theWBU schemeisobtainedbysubstitutingtheequation
for the first stageinto the second:

_,(1) V,(0) A¢ [_(0) _(0) ± (df-(0) ._-(0)'_] ]
Ej = a..Jj _ i Lij -LiJ-1" k J+_ -u.j__)j

i

\ rlL \ 3

L\ -7 j+_ ] \ 3-_ j+_ ] j j ]

(3.22)

The advantage of this upwind scheme is that it can easily be obtained by modifying the inviscid

fluxes used in MacCormack's scheme. The above scheme differs in practice from other upwind

schemes because the first-order upwind flux approximation is based on modifying either a

forward or a backward flux instead of a central flux (eq. (3.14)). The metrics used in the

definition of the FDS are defined so that any downwind contributions exactly cancel.

Consider the first-order approximation of the flux derivative including the geometric conser-

vation law (GCL) terms on a grid where _ = _(y) with the upwind flux definition based on a

backward flux approximation:

Fij+½ - Fij_½ - GCLj

( 7?YF .I - [ _?YF "_: + dfj+½ - k7

(F j

?}y

--df;-½ - Fij [(_ff )j - (-j)j_l]

-%_½ (3.23)

If all the eigenvalues are positive, the FDS terms would be zero and result in a backward

difference approximation of the flux derivative. If all the eigenvalues are negative, the FDS

terms exactly cancel out the backward difference if

: (-J)j-1 (A < 0) (3.24)

and thus

: (-j-)j_½ (F(_ - Fij_I ) (Alia <0)df2½ 'Y

which results in a forward difference approximation of the flux derivative.

If an upwind flux is formed based on a forward flux approximation, then the forward

difference would be canceled by the FDS terms if all the eigenvatues are positive and the metrics

are defined by

_v : 0) (3.25)
(_)j+½ : (-J-)j+l ()_:>

and thus

df "+,1./.,_= k--j('Y)j+_l (Fij+I - FiJ) (All A > o)

The metrics for a general transformation, 7/-- r](x, y, z), would be defined at the same points

as above for the positive and negative flux differences. The different approximations for the

upwind flux should be alternated after one complete cycle of the algorithm to eliminate biasing.

18



3.5. Viscous Stress and Heat Flux Differencing

The finite-difference approximations of the stress tensor and the heat fluxes are made so that

their derivatives formed in each stage of the algorithm are second-order accurate. This requires

separate approximations of the stress tensor and the heat fluxes for each differencing direction.

The separate approximations of the stress tensor and heat fluxes result in a source term that is

canceled by including the GCL terms. The derivatives of the stress tensor for the x-momentum

equation including the first GCL term are

rlxrxx q- r]yrxy q- rlzrxz _zTxz -t- _YTxy Jr- CzTxz , Vx , (:c (3.26)
y + y -_-xx -,-xx -...

,7 ¢ ,7 ;

where two discrete approximations of the same stress are used. The single prime denotes stresses

to be differenced in the r_-direction, and the double prime the (-direction. Let j represent the grid

points in the rl-direction, and k the (-direction. For example, assume that a forward difference

of the viscous stresses in the first stage of the algorithm is required. The discrete approximation

of Txy in a generalized coordinate system (At] = A( = 1) would be

Itj'k , ( uj'k+l -- "aj,k_ 1 }

Reoo [rlyj,k (UJ,k -- Uj-l,k) + (YJk 2 )+''']
(3.27)

This differencing scheme for the stress and heat flux terms results in a source term that has

to be canceled by including the geometric conservation law (GCL) in the integration algorithm

(see Gielda and McRae 1986).

3.6. Explicit Upwind Integration Scheme for the Three-Dimensional PNS

Equations

An explicit upwind integration scheme for the three-dimensional PNS equations can be

formed using the flux-limited form of the WBU scheme and the stress and heat flux differencing

developed by Gielda and McRae (1986). A second-order, two-stage, explicit, upwind scheme for

the PNS equations is

k 'J / j,k _-- _k g ] j,k ½,k l"J,k

=1[ _ )

)1- _., _.. GCL_ + p j,_
j,k

-- __ % Fr T}_GIWxE' + -- + --
f vj,k = j V),k j vj,k j vj,k

-- = (z G"%, ¢_E" ¢__< +j vj,k + d j,k j vy,k

(3.28)

19



The superscriptn stands for the values determined at the initiM condition, the p values are

based on the result of the first stage, and n + 1 stands for the solution point. The fluxes Fv and

Gv denote the diffusion terms. The single prime denotes viscous stress and heat fluxes to be

differenced in the _-direction, and the double prime denotes differencing in the C-direction.

3.7. Geometric Conservation Law

The GCL term included in the numerical algorithm is used to cancel source terms occurring

from the differencing of the stress terms as mentioned previously and the use of the Vigneron

coefficient in the dependent flux vector (see Gielda and McRae 1986 for details). The GCL term

in equation (3.28) is defined as

CCL_,_= Ej,k \ a ]_,k - \T]j,kJ

+ EJ'k [\J-]j+l,k- \-J-]j,kJ + _j,k [\J-]j,k+l- \-J/j,kJ

+ FJ'kL\JJ;+l,k- \TJ;,kJ LkT/j,k+_ - \-));,kJ

+ GJ,k!_\TJj+_,k- \J-Jj,kJ + "-'j,k [\713,k+_- \ J)3,kJ

aCL;,k= Ej,k L\-)-].j,k - \J-]j,kJ

+ E_k [\J-/j,k

+ Fi,k Lt-)-/j,k

_ (17x) n+l I _I_EUP [(_x_ n+l (_x_ n+l ]
J j-i,k.t ,s,,,<It, a)j,k - tg-)s.k_lJ

1 .,,,,r,,<,,. n+l(_-y,,_n+l 1

-- \-Ji j-l,k] -t---j,k Lt-).jj,_:- t..1 } j,k-lJ

it j/j,\ t j ]j-l,kj

E I = Ei - E_ E" = Ei - E_

F' = Fi - Fly F" = Fi - F_

G' = Gi - G" G" = G, - G_

__,,_r(¢z] _÷, (¢z]n+,]
+_J,_Lt J )_,k - tTij,k-d

(3.29)

3.8. Implementing Boundary Conditions

Boundary conditions at the wall are implemented by applying the no-slip condition at the wall

to the velocity components, applying the constant wall temperature condition, and satisfying a

normal momentum equation solved for pressure at the wall. The density at the wall is determined

from the wall temperature, pressure, and equation of state. The discrete equation for the wall

pressure was established by applying the no-slip velocity condition to the y- and z-momentum

equations where _ is the direction that intersects the wall. The y- and z-momentum equations
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evaluatedat the wall are

+ ¢x( xy)1 + +

_TzP_+ _zP I = _Tx(Txz)o + rly(Tyz)_ "}- ?Tz(Tzz)_7

+ ¢x(T z)1 + +

The derivative Pl is eliminated between the two momentum equations:

p_ = _

# -V_ + +

(3.30)

(3.31)

where

V = _xU + O_v + _zW, W = _xu + _v + _w, _ = _zV - _w

A second-order, finite-difference module for equation (3.31) is solved for the wall pressure. The

above formulation differs from the more approximate method obtained by neglecting the stress

derivatives. Including the stress terms in equation (3.31) eliminated severe oscillations of the

surface pressure experienced at the tip of delta wings in high Mach number flows.

3.9. Selecting a Marching Step Size

The allowable step size is calculated from+a combination of the maximum allowable inviscid

and viscous step sizes for a linear system. The inviscid upwind algorithm has a Courant-

Friedrichs-Lewy (CFL) linear-stability limit of 2, and a viscous limit of t/2 for two-dimensional

problems and t/4 for three-dimensional problems. If the distance between points in the 77-and

4-directions is denoted as Ar and As, respectively, a marching step size Ax can be calculated

by neglecting the crossflow velocities and assuming that the first point off the wall is subsonic:

Ad
_ 2 (3.32)

Ax < Ad +
2min(Ar, As)M__

where Ar As
Ad-

x/Ar 2 + As 2

Equation (3.32) is usually applied with a safety factor of about 0.90 for simple geometric shapes.

Note that this equation gives a marching step size that is twice that of MacCormack's scheme.

The starting step size should be calculated by replacing the local axial Mach number M_ with

one slightly larger than the desired M_ for one point off the surface.

3.10. Three-Dimensional, Upwind-Biased Method

The PNS equations are integrated using space marching procedures. This allows a two-

dimensional flow problem to be solved with a one-dimensional numerical method, and a

three-dimensional flow problem with a two-dimensional numerical method. The upwind
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flux approximationsfor the pressureand convectionterms are formedfrom one-dimensional
numericaloperators.Theone-dimensionalnumericaloperatorsaredeterminedanalyticallyby
solvinga RP.TheRiemannsolutionis for anapproximateformof the two-dimensionalinviscid
PNSequationswhichlocallymodelsthe inviscidflowbetweentwopoints.Unfortunately,there
is not a two-dimensionalanalytical solutionof steadythree-dimensionalflow which can be
usedin determininganappropriatetwo-dimensionalnumericaloperatorfor approximatingthe
numericalfluxes. In practice,the numericalfluxesfor a multidimensionalnumericalproblem
areusuallydeterminedby a sequenceof one-dimensionalnumericaloperators.Algorithmsfor
thethree-dimensionalPNSequationsrequiretwo differentflux approximationsin the crossflow
plane.Thefully upwindalgorithmfor the three-dimensionalPNSequationspresentedearlieris
basedontwoone-dimensionalupwindoperatorsdeterminedfrom theRiemannsolutionfor two-
dimensionalsteadyflow. Thecombinationof twosetsof RPs,onefor eachcoordinatedirection
in the crossflowplane,doesnot alwayscorrectlymodelthe physicsof a three-dimensionalflow
field.Thepurposeofthissectionis to investigatealternatewaysof approximatingtheconvection
fluxesin the crossflowplaneto modelthe physicsof the flow fieldmoreaccurately.

Upwindflux approximationsconstructedfrom analyticalsolutionsof RP'sareusedbecause
of their excellentshock-capturingcapability. For eachintegrationstepof a one-dimensional
upwindnumericalmethod,a shockwaveis capturedbetweenonly two points. This represents
a point discontinuityalonga line of data. For three-dimensionalsteadyflow, the shockwave
representsa discontinuouscurvein the crossflowplane.The useof one-dimensionalanalytical
solutionsto determineupwindflux approximationsfor multidimensionalschemescan result in
difficultiesassociatedwith thediscretizationof a continuousproblemcontaininga shockwave.
When the shockwaveis mappedonto a discretegrid for the crossflowplane (fig. 3.4), the
discontinuitycuts acrossdata cellsunlesstheshockalignswith the numericalgrid. The fully
upwindalgorithmtreatsthediscontinuousdataasjumpsandattemptsto modelashockat each
cell interfacein all directions.In this case,the upwindflux approximationdoesnot represent
the physicsasclearlyas in the two-dimensionalcase.Whenthe crossflowvelocitytangentto
a shockwaveis nearzero,the numericaldissipationof the schemein this directionis small.
The numericaldissipationthat is inherentin the numericalmethoddependson the magnitude
of the eigenvalues.Threeout of the five eigenvaluesare directly relatedto the magnitude
of the crossflowvelocities.Significanterrorscanoccurwhenthe velocity tangentto a shock
is nearzeroand a slight differenceoccursbetweenadjacentcellsnext to the capturedshock
(fig. 3.5). Thenumericalresultsmaydrift awayfrom the correctsolutionwhena shockwave
is not perfectlyalignedwith the numericalgrid in areaswherethe numericalschemehaslittle
naturalnumericaldissipation.As a shockwavemovesacrossanumericalgrid, errorsaremade
asthediscontinuityjumpsacrossfiniteareas.If thevelocitytangentto astrongshockisnearly
zero,small disturbancescan occur in the tangentialvelocity that transportslargeamounts
of conservedquantities(ColellaandWoodward1984). Theseerrorsareminimizedin regions
wherethereisa largeenoughtangentialvelocityprovidingenoughdissipationfromthenumerical
methodto ensurethe correctsolution. This problemhasbeenhandledby addingdissipation
to the numericalmethodusinga numberof differentdevices. A commonlyusedprocedure
is a deviceoriginallyproposedby Harten (1983)for eliminatingexpansionshocks.Harten's
devicemaintainsthe absolutevalueof the eigenvaluesabovea minimumvalueto guaranteea
minimumamountof numericaldissipationin all flowregions.Specifyingthe correctamountis
difficult whenthe viscoustermsarepresentsincethe convectioneigenvaluesarenearzeroin
the boundarylayer. Colellaand Woodward(1984)developeda numberof differentmethods
for eliminatingthe multidimensionaloscillationswith their RP solverfor the Euler equations.
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Unfortunately,eachoneof thesemethodsusescoefficientsthat requiretuningby the user.The
mainreasonfor usinganupwindschemewasto eliminatethe needto useadditionaldissipation
that woulddependonuser-specifiedparameters.

11
E*

Shockwave

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiiiiii

Figure 3.4. Mapping of a shock wave in the crossflow plane.
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Figure 3.5. Uneven shock capturing in the crossflow plane.

An alternate approach to adding dissipation explicitly is to use a numerical method that

models the physics of the flow more accurately. A two-dimensional numerical scheme is defined
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asa schemewhichselectsdifferentflux approximationsbasedon somephysicalcharacteristic
of the flow field that doesnot occurin the one-dimensionalscheme.MurmanandCole(1971)
and Jameson(1974)usedtwo-dimensionalschemesfor integratingthe potential equationin
regionsof transonicflow. Murmanintroducedtheideaof equation-type-dependentdifferencing
with the useof upwinddifferencingin hyperbolicregionsand centraldifferencingin elliptic
regions.Jameson(1974)applieda rotateddifferencingschemeto the potential equationthat
usedupwinddifferencingonly in the localstreamdirectionwhenthe equationsetis hyperbolic
(for supersonicflow) and centraldifferencingelsewhere.Davis (1984)developeda rotational
upwind-biaseddifferenceschemefor usewith Euler'sequations.Thefirst stepof Davis'scheme
wasto determinethe directionin whicha shockwave(i.e.,RP) wouldbeorientedif it existed
in the finite-differencestencil (fig. 3.6). An upwindalgorithmwould then beusedin a local
coordinatesystemrotatedto benormalto theorientationoftheassumedshockwave.Roe(1986)
proposeda two-dimensionalRPalgorithmwhichhasnot beenimplemented.Hirsch,Lacor,and
Deconinck(1987)haveinvestigateda methodin whichthe two-dimensionalunsteadyform of
Euler'sequationscanbediagonalizedfor specialflowconditions.
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Figure 3.6. Shock angle in the computational plane.

The two-dimensional problem described previously has to do with the mapping of a shock

wave as a discontinuous curve. Riemann methods are based on the assumption that the data are

piecewise continuous. This assumption is correct in the direction normal to the shock wave. The

data in the tangential direction to the shock wave should be continuous without jumps. Davis'

(1984) scheme is based on this observation. Recall that the fully upwind scheme described in

section 3.6 becomes a central difference scheme based on MacCormack's (1969) method when

there is no jump in the initial data used in solving the RP's. A combination method based on

Davis' ideas can be incorporated by using the solution of the RP only in the directions normal

to an assumed shock wave position. In this case the flux approximation at an interface now

depends on the angle of an assumed shock wave. Since the RP is solved for an interface in the
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computationalplane,theanglethat theassumedshockwavewouldmakeat this interfacehasto
bedetermined.Theassumedshockanglecanbedeterminedusinggeometrybyrecognizingthat
thereis novelocityjump in the directiontangentialto a shockwave(Davis1984).A quadratic
equationfor the shockanglederivedfrom thegeometryin the computationalplaneis

V(tan20 - tan¢p (_Y( - V,_) - WT_ = 0 (3.33)

where V and W are defined as for equation (3.31). Equation (3.33) differs from Davis'

formulation of the shock angle since it is not based on an approximation. Once the angle

of the shock in the computational plane at the interface is known, then the FDS terms can be

modified by
5

df.+l = 6j+½ E Am d-IAml (OZmem)j+½
2_-_ rn=l 2

5

dfj+½ = 6j+½ E Am -IAml
m=l 2 (ctmera)j+ ½

(3.34)

The parameter 5 can vary from 0 to 1. For the interface location between points in the rl-

direction, 5 = Icos _I. For the interface location between points in the (-direction, 5 = lsin _I.

To summarize, first the RP's are solved in the computational coordinate system as if fully

upwind differencing is to be used for the pressure and convection terms. Second the angle at

which a shock wave would occur at the interface is calculated from equation (3.33). Finally the

FDS expression is multiplied by either the sine or the cosine of the shock angle for the interface

(eq. (3.34)). Following this procedure, an upwind differencing stencil is used for the pressure

and convection terms in the direction normal to a shock wave and MacCormack's differencing

stencil is used in the direction tangential to a shock wave.
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4. Two-Dimensional Results

The explicit upwind algorithm (section 3.6) is

used to solve the parabolized Navier-Stokes (PNS)

equations for three two-dimensional supersonic and

hypersonic viscous flows. The explicit upwind PNS

solver applied to two-dimensional flow problems has

the advantage that the numerical problem is one-

dimensional. The Riemann problem (RP) used in

this study models the convection terms of the two-
dimensional PNS equations. The successflll simula-
tion of the two-dimensional test cases validates the

upwind flux approximations determined from the so-
lution of the RP. Solutions arc calculated for laminar

flow over a flat plate, across a ramp, and through an
inlet. The calculations were done on both a Gould

minicomputer and the Numerical Aerodynamic Sim-

ulation (NAS) Cray 2 supercomputer. The calcula-
tions were repeated on the Cray 2 to obtain cxecution
times for the vectorized code.

The numerical grids were generated at each new

station using algebraic stretching functions to cluster

the spacing of the points near the wall. The stretch-

ing transformation can be found in the text of An-

derson, Tannehill, and Pletcher (1984):

r(j) = r(1)+ [r(nj) - r(1)]h (nj - j (4.1)

where
2Z

h(kO) = 1 - _ +

1 + (__+11) _

The distance away from the wall (j = 1) is denoted

by r, and nj denotes the total number of points. This
transformation clusters points around j = 1 when the

values of the stretching parameter fl are close to 1.

4.1. Supersonic Laminar Flow Over a Flat
Plate

The first case is for supersonic laminar flow over

a flat plate. The conditions are

]_lcc = 2.0 Re L = 1.65 × 106 L = 1.0 m

Pr = 0.72 Tc¢= Tw = 222 K a = 0.80

where Tw is the wall temperature and a is the safety

factor introduced in equation (2.12). The supersonic
laminar flow field for a flat plate at Mach 2.0 is com-

prised of a weak leading edge shock and a Blasius
boundary layer profile (fig. 4.1). The correct predic-

tion of both the velocity and the temperature profile

verifies that the numerical scheme accurately cap-
tures the weak shock and resolves the viscous and

heat fluxes. The use of an explicit scheme for this

case requires a large number of marching steps be-

cause of the small normal grid spacing required to

represent the Mach 2.0 boundary layer. The results

of the upwind scheme at the final exit station show

that the numerical dissipation inherent in the upwind

differencing of the convection term does not adversely
affect the resolution of the viscous terms.

The computational domain was sized to include

the leading edge shock. The vertical height of the

grid was initially set to y = 0.06 and was made to

grow linearly to a maximum height of y = 0.525

at x = 0.93. The computational grid consisted of

104 points in the _-plane. The code was started

using free-stream initial plane conditions with an

initial maximum marching step size of Ax = 0.00015

until x = 0.025. Once this point had been reached,

the step size was varied based upon the result of

equation (3.32). The grid stretching parameter was

initially set to 1.01 until after startup was completed

and then varied to maintain the first point off the

surface at approximately M = 0.15. The number

of points for the 7?-plane was determined to ensure

having at least 10 points in the axial boundary layer

profile at x = 0.93.

The results of the explicit upwind code are com-

pared at x = 0.93 with the results of Lawrence, Tan-

nehill, and Chaussee (1986) who used an implicit

PNS code (Beam and Warming 1978). The tempera-
ture and axial velocity profiles at x = 0.93 are shown

in figures 4.2 and 4.3. The Beam-Warming code was

started using the results from a boundary layer code
at x = 0.3 and used approximately twice the number

of equally spaced points in the boundary layer (only

half are shown). The boundary layer profiles compare

favorably even with the different initial condition and

stretched grid used with the explicit upwind code.

This stretched grid was scaled to the boundary

layer growth to maintain the same Math number at
the first point off the wall. In so doing, the scaled

grid minimized the effect of the source term f_( in

equation (2.14). To illustrate the effect of f_(, two
additional runs were made on a second grid with

a fixed point spacing with the same normal point

distribution as at the final station of the original

scaled grid. On the second fixed grid, the source term

ft( is significant because of the streamwise change
of each grid point's Mach number as the boundary

layer grows. Figure 4.4 shows the effect on the

temperature profile of including and neglecting _(
in the numerical scheme when obtaining a solution

on the two fixed grids. The error of not including

_t( is clearly seen in the drop in the maximum
temperature.

The subroutine used to calculate the flux-

difference splitting (FDS) required 49 percent of the
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centralprocessingunit (CPU) time. Thealgorithm
required0.216× 10-4 secper longitudinalstepper
normalgrid pointon theCray 2 computer.

4.2. Hypersonic Laminar Flow Over a

Compression Ramp

The second test case is the simulation of two-

dimensional hypersonic laminar flow across a fiat

plate and over a 15 ° ramp. The conditions are

AI_ = 14.1 ReL = 1.04 × 105 L = 0.439 m

Toc=72.2K Tw=297.0K Pr=0.72
a = 0.75

where the characteristic length, on which the

Reynolds number is based, is the length of the flat

plate. The 15 ° ramp is one of many ramps studied

experimentally at the above free-stream conditions

by Holden and Moselle (1970). The distinguishing
features of this case are the interaction between the

viscous and inviscid flows and the lack of evidence

of any separation at the base of the ramp in the ex-

perimental data. The high Mach number flow on

the flat plate results in the pressure profile normal

to the surface being curved in the boundary layer.
The inviscid flow structure consists of a leading edge

shock which intersects the induced shock formed by

the ramp. The two right-running shocks intersect to
form a single stronger shock, an expansion fan, and

a contact surface (fig. 4.5).

The computational grid consisted of 45 points in

the 7?-direction. The top of the grid was defined by

f 0.135 + 0.104x (For x < 1.65)
Ytop = _. 0.3066 + tan(15°)x (For x > 1.65)

The grid was stretched in the normal direction using

a constant stretching factor of 1.04. The law-of-the-

wall coordinate (y+) for the first point away from the
wall varied between 0.87 and 0.33 from the leading

edge of the flat plate to the corner of the ramp and
reached a maximum of 2.7 on the ramp. The code

was started using free-stream initial conditions and a

step size of 0.0005. The step size was reduced when

the result of equation (3.32) was smaller than 0.0005.

The results of the explicit upwind code are com-

pared with the experimental results of Holden and

Moselle (1970) and the numerical results of Hung

and MacCormack (1976) for the Navier-Stokes (NS)

equations. The results for surface pressure (cp), heat

transfer (Ch), and skin friction (cf) coefficients are
shown in figures 4.6, 4.7, and 4.8. The coefficients

are defined as

P /OT
Pw _ w

Ch---- ReLPr(:_M2 W l- T,, )

#w O_nnwcf--
ReL

(4.2)

where

0() _ sec(0) 0( )
On O_l

and subscript w indicates values at the wall, n repre-
sents the surface normal direction, and 0 represents

the angle which the _-coordinate makes with the sur-

face normal direction. A slight overprediction of the

experimental data can be observed that is consistent
with numerical results using other methods (Gielda

and McRae 1986; Lawrence, Tannehill, and Chaussee

1986). Lawrence et al. attributed this difference to a

flow misalignment with the ramp. The explicit up-

wind results agree favorably with the Navier-Stokes

solution except around the beginning of the ramp.

Since the PNS equations do not allow upstream prop-

agation of information in the subsonic region, the

cp, Ch, and cf results do not increase until the cor-
ner of the wedge is reached, while the experimental

and NS results definitely increase before the corner.

The comparison of cI in figure 4.8 shows that the
flow was very close to separating at the corner of the

ramp. The excellent agreement of the explicit up-

wind cf with the Navier-Stokes results before and
after the ramp corner was attributed to the addition

of the source term _. Recall that _ was added to
cancel the variation of w in the streamwise direction

(eq. (2.14)).

The interaction of the leading edge shock and the

wedge shock is shown in the Mach number contour

(fig. 4.9) and the pressure contour (fig. 4.10) from

the explicit upwind algorithm. The intersections of

the leading edge shock and the wedge shock, the
new combination shock, and the expansion fan are

sharply defined in the pressure contour. The contact
surface can be seen immediately after the shock in-

tersection in the Mach contour. Notice that the pres-
sure contour is oscillation free near the wall. This is

in contrast to the implicit application by Lawrence,

Tannehill, and Chaussee (1986), which showed pres-

sure oscillations near the wall. They attributed the
oscillations to the switch from their upwind scheme

in the supersonic region to a central difference al-

gorithm in the subsonic region. When the above
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switchwasimplementedin the explicitupwindal-
gorithm, the stability and accuracyof the scheme
deteriorateddramatically.Therefore,it is important
to usethe samedifferencingschemethroughoutthe
subsonicregion.

4.3. Hypersonic Laminar Flow Through
an Inlet

Thefinaltwo-dimensionaltest caseis for a com-
plicatedhypersonicflowfield in a converginginlet,.
Thegeometryof theinletisgivenin figure4.11.The
free-streamconditionsare

Moc=15 Re L=8.0x 104 L=0.4m

Tee = 100 K Tw = 1000 K Pr = 0.72
a = 0.75

The characteristic length is the length of the flat plate

at the entrance of the inlet. The NS results (New-

some, Walters, and Thomas 1987) for this inlet flow

field indicate a strongly interacting flow which expe-

riences streamwise separation at the compression and
expansion corners and at the intersection of the shock

waves with the wall. One-sweep PNS solvers can

march through streamwise separation points with-

out predicting separation. Therefore, a one-sweep

PNS solution does not accurately represent the NS

solution in areas around the separation regions. The

one-sweep PNS solution can be used as initial con-
ditions for NS solvers or for preliminary evaluation

of the inviscid flow field structure. The purpose

of this test case is to evaluate the performance of

the upwind scheme for an inviseid flow containing a

number of intersecting and reflecting shock waves.
This is a numerical test case solved by Lawrence,

Tannehill, and Chaussee (1986) and Newsome, Wai-
ters, and Thomas (1987). Lawrence et al. solved the

PNS equations using an implicit noniterative upwind

scheme. Newsome et al. solved both the PNS equa-

tions and the thin-layer Navier-Stokes equations us-

ing an implicit upwind relaxation method.

The numerical domain for the explicit upwind
scheme extends in the vertical direction from the

wall to the centerline of the inlet. The numerical

grid consisted of 45 points in the vertical direction

which included the 2 points required for the sym-

metry boundary condition at the inlet centerline. A

constant stretching coefficient of 1.08 was used for

the entire length of the inlet. The normal point dis-

tribution is identical to what was used by Newsome
et al. The centerline and the wall boundaries are

Ytop = 0.375

0 (x< 1)
 waH= (x - 1) tan(15°) (1 < x < 2)

tan(15 °) (x > 2)

The code was started using free-stream initial condi-

tions and a streamwise step size of 0.0002. The step

size was reduced if the result of equation (3.32) was
less than 0.0002. A safety factor of 0.5 was used in

the step size calculation to maintain stability when
the shock waves intersected the inlet walls. This cal-

culation required 20 220 marching steps to reach the

end of the inlet (x = 4), using 23 seconds of CPU

time on the NAS Cray 2 computer.

Pressure, heat transfer, and skin friction coef-

ficients from the explicit upwind PNS solution are

compared with Newsome et al.'s PNS and NS solu-

tions. The pressure coefficients (fig. 4.12) and the

heat transfer coefficients (fig. 4.13) agree favorably

with their PNS solution and NS solution except in

the regions around the flow separation. A slight dif-
ference is observed near the location of the second

shock reflection in the inlet for both the pressure
and the heat transfer coefficient. This difference is

attributed in part to the difference in modeling the

symmetry condition with the finite-difference formu-

lation used in this study and with the finite-volume

formulation used by Newsome et al. The compar-

ison of skin friction coefficients (fig. 4.14) is favor-

able only for the flat plate region. The complicated
shock wave structure for the inlet can be observed in

the pressure contour (fig. 4.15) and the Maeh num-

ber contour (fig. 4.16). The shock waves are sharply

captured using the upwind scheme without pre- and
post-shock oscillations. While the overall trends of

the two PNS solutions are similar, part of the differ-

ence may be attributed to the more complete mod-

eling of the viscous terms used in this study and the

increased streamwise accuracy of the explicit calcu-
lation because of the large number of streamwise sta-

tions required. The previous study of Newsome et al.

used 220 streamwise planes, while the explicit calcu-

lation made here used 20 220 streamwise planes. The

same number of points in the vertical direction was
used in both studies.

28



Shockwave

Boundarylayer
i,,_X

Figure 4.1. Shock and boundary layer in M = 2.0 laminar flow over a flat plate.
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10°

L)

= 10

10 -2
d:

n

[]

u u

------n_+_/ . .°
innun" •

U

PNS, explicit upwind

NS, Hung & MacCormack (1976)

Data, Holden & Moselle (1970)

IO -3 , I n I n I n I _ I , I , I

.4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0

Axial distance, x

Figure 4.6. Comparison of computed pressure coefficients with experimental data.._,I_ = 14.1; RCL = 1.04 x 105.

31



10-2

¢.9

e=

O
L)

-3
10

I

u n I

[] [] UnuUnlLil

PNS explicit upwind

• NS, Hung & MacCormack (1976)

u Data, Holden & Moselle (1970)

10 -4 , I . I . I . I , I , I a I ,

.4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0

Axial distance, x

Figure 4.7. Comparison of computed heat transfer coefficients with experimental data. M_ = 14.1; ReL = 1.04 x 10`5.

8

O

.0O6

PNS, explicit upwind

.005 • NS, Hung & MacCormack (1976)

[] Data, Holden & Moselle (1970)

.004

.003

.002

' • []

.001

[ n _..u
0 , I , I

.4 .6 .8 1.0 1.2 1.4

Axial distance, x

I n I i

1.6 1.8 2.0

Figure 4.8, Comparison of computed skin friction coefficients with experimental data. M_o = 14.1; ReL = 1.04 x 10`5.

32



d

2:

.½:

.3

.2

.1

1 J
1.25 1.50 1.75 2.00

Axial distance,x

Figure 4.9. Mach number contours on the 15° ramp from explicit upwind solution. M_ = 14.1; Re L = ].04 x 104.

.q

.3

(D

Z

.2

.I

I I
1.2S 1.50 1.'75 2.00

Axial distance, x

Figure 4.10. Pressure contours on the 15 ° ramp from explicit upwind solution. M_c = 14.1; ReL = 1.04 x 105.

33



< L >

4L )

Figure 4.11. Converging inlet.

10 0

m, x il

10 -1
"5

i 10_2

x

PNS, explicit upwind

NS, Newsome et al. (1987)

PNS, Newsome et al. (1987)

10 -3 , i i ! _ i _ I i I i I _ I _ I

.4 .8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

Axial distance, x
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5. Three-Dimensional Results

Two three-dimensional hypersonic viscous flow

cases were simulated by solving the three-dimensional

parabolized Navier-Stokes (PNS) equations. The so-
lution of the three-dimensional PNS equations re-

quires the approximation of two flux derivatives in

the crossflow plane. The two-dimensional form of

thc explicit upwind algorithm for the PNS equations
was extended to solve the three-dimensional PNS

equations by approximating the convection deriva-

tives with (1) upwind flux approximations (fully up-

wind method) and (2) a combination of upwind and

MacCormack's (1969) flux approximations (upwind-

biased method). Both forms of the algorithm are
used in the first three-dimensional test case for sim-

ulating hypersonic viscous flow over a cone at high

angle of attack. A limitation in using the fully up-
wind method at high angles of attack is discussed.

The fully upwind form of the algorithm is used in
the last test case to simulate a Mach 24.5 flow field

about a generic airplane configuration. A special pro-
cedure is used for defining the numerical grid in the

crossflow plane during the development of the sharp

delta wings.
The computer code for solving the three-

dimensional PNS equations used to generate these
results can be characterized as a MacCormack code

plus a subroutine to execute the equations in the

body and appendix of this study for determining

the flux-difference splitting (FDS). All inner do loops
werc vectorized for use on the NAS Cray 2 computer.

While the code is highly vectorized, it was developed

to verify the algorithms rather than to optimize ex-

ecution speed. The execution times on the Cray 2

given here can be improved by combining some of
the calculations and extending the effective lengths

for multiple do loops.

5.1. Hypersonic Flow Over a Cone

The fourth test casc simulates laminar, three-
dimensional hypersonic flow over a 10 ° half-angle
cone at an angle of attack a of 24 ° (fig. 5.1). The
conditions are

M_ = 7.95 Re = 4.101 × 106/m L = 0.3048 m

Ttotal,o¢ = 755.4 K Tw = 309.8 K Pr = 0.72
a = 0.75

The above conditions are for the largest angle of at-

tack considered in Tracy's (1963) experimental inves-

tigation. The high angle of attack and free-stream

Mach number result in a complex flow field because

of the interaction of the supersonic crossflow with the

boundary layer. The inviscid flow structure is dom-

inated by a conical outer shock. The conical outer

shock's shape changes on the leeward side of the cone

because of the growth of the viscous layer. The cross-

flow is stagnated on the windward side and rapidly

expands to supersonic speeds as it wraps around the
circumference of the cone. The boundary layer grad-

ually thickens as the crossflow moves across the cone
toward the leeward side. A crossflow separation oc-

curs as the flow approaches the top of the leeward

side. The separation region generates an increased

displacement thickness on the leeward side of the
cone which expands the position of the outer conical
shock on the leeward side. A lambda shock forms in-

side the outer shock wave as the crossflow approaches

the leeward side to provide the necessary transition

to subsonic speeds. The complicated flow field is an

excellent and demanding test case for establishing the

capabilities of numerical codes.

The computational grid for the crossflow plane

consisted of 50 points in the normal direction and 56

circumferential points. The computational grid for

the crossflow plane is shown in figure 5.2 using every

fifth point in the direction normal to the surface.

The computational grids and solution contours are

displayed in conical coordinates:

(})}
Oy = _ arctan

zOz _ arctan

(5.1)

where R = _. The circumferential rays were

equally spaced around the cone while the grid was

initially stretched in the normal direction with a

stretching parameter of 1.12. The outer boundary

was set outside the expected shock position. The

grid was made to grow in the marching direction in
a conical fashion. The code was started from free-

stream conditions at x = 0.015 with the marching

step size determined by equation (3.32). The axial
Mach number varied between 0.2 and 0.5 for the first

node off the surface at the crossflow stagnation point.

Typical values of the law-of-the-wall coordinate (y+)

for the first point off the wall at solution station

(x = 0.266) varied from 0.7 to a maximum of 5.0

at the crossflow stagnation point.

One reason for using upwind differencing for the

convection and pressure terms is to eliminate the

need for additional smoothing or damping parame-

ters to maintain numerical stability when capturing
shock waves. For three-dimensional flows solved with

upwind differences, a problem was encountered hav-

ing to do with the mapping of a shock wave onto

a numerical grid. The perfect grid would be ori-
ented so that the shock wave was contained along
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an axisin thecomputationalplane.Whena shock
wavedoesnot moveuniformlyin thecomputational
plane,anunrealisticsetof initial statesoccurswhen
the Riemannproblem(RP) is solvedtangentialto
the shockwave.Thisresultsin a nonphysicalflux
errorwhichis not dampedout in regionswherethe
numericalschemehas low dissipation. For three-
dimensionalflow about a cone,this situationoc-
cursalongthecrossflowsymmetryline at highan-
glesof attack. Nonphysicalsolutionswereobtained
aroundthe crossflowsymmetrylinefor highangles
of attackwhenusingupwinddifferencingof thepres-
sureandconvectionterms.Low-angle-of-attackcases
werecalculatedusingupwinddifferenceswithoutthe
aboveproblem.Thenonphysicalsolutionsbeginto
developwhenthebow shockwavehasmovedout-
sidethe viscousregion,usuallyat 20000to 30000
marchingstepsfromtheinitial datacrossplane.The
pressureslowlybecomeseitherextremelyhighor low
whencomparedwith both the experimentalresults
andthe nextgrid point in the tangentialdirection.
Thisproblemwassolvedby two differentmethods:
by addingdissipationwith Harten's(1983)device
whenthe shockswerenot alignedin the computa-
tionalplane,or bydifferencingthepressureandcon-
vectiontermswith MacCormack's(1969)methodin
thedirectiontangentto a shockwaveandusingup-
winddifferencingin the normaldirection(upwind-
biasedmethod).Thecrosssectionpressurecontour
for thefully upwindmethod(fig.5.3(a)) shows the
difficulty most strongly at the windward crossflow

symmetry line, while the contour for the upwind-

biased method (fig. 5.3(b)) shows tile correct result

at the crossflow symmetry. Application of Harten's

device was difficult. Harten's device adds dissipation,

or smoothing, by artificially preventing the absolute

value of eigenvalues from decreasing below a certain

level. To correct the problem at the crossflow sym-

metry line, the amount of smoothing added resulted

in a large increase in the boundary layer thickness

and smearing of the shock wave. The results obtained

with Harten's device are not included since they were

poor compared with the solution obtained with the

upwind-biased method. The correct solution to the
three-dimensional flow problem was obtained with-

out additional damping terms only if a central dif-

ferencing algorithm (MacCormack's) in the direction
tangential to the shock was used.

The surface pressure distribution at x = 0.325

(fig. 5.4) agrees well with experimental data on the

leeward side and is slightly lower than the experimen-

tal results on the windward side. This is typical of

previous numerical studies (Gielda and McRae 1986;

McRae 1976) and has been attributed to the experi-
mental error associated with the size of the pressure

tap compared with the boundary layer thickness on

the windward side. The experimental results include

cross section surveys of the flow field showing the
location of the shock wave, viscous region, and min-

imum pitot tube pressures. These data were taken

along surface normals at z = 0.2831 (that is, 8.8 cm)

from the apex of the cone measured along the cone's

surface. The numerical results are in a plane nor-
mal to the centerline of the cone. The numerical re-

sults were compared with the experimental data by

projecting the numerical results into a conical coor-

dinate system. The numerical results for the cross-

flow plane that bisects the conical experimental data

arc shown in figure 5.5 for the Maeh number contour

at x = 0.266 with the experimental determination

of shock location, viscous boundary, and minimum

pitot pressure. Since the flow field is nearly conical
at this point, the locations of the shock and viscous

region agree fairly well except on top of the leeward
side.

The execution of FDS required 56 percent of the
CPU time. The new algorithm achieved a compu-

tational rate of 0.434 x 10 .4 see per point for one

complete step of the algorithm.

5.2. Hypersonic Flow Past a Generic
Vehicle

The last test case simulates a laminar hypersonic

flow field about a generic airplane configuration. The
purposc of this test case is to demonstrate the capa-

bility of the upwind algorithm for solving the PNS

cquations to simulate a hypersonic flow field about

a realistic geometry. The airplane configuration and

flow conditions are taken from the numerical study

done by Richardson and Morrison (1987). Note that

this is a demonstration case since real gas effects are

not taken into account. The forward part of the

body is a 4.6 ° half-angle sharp circular cone, which

extends 756 in. (19.2 m) from the nose. The cone

is connected to a cylindrical body which extends to

1371 in. (34.8 m) from the nose (fig. 5.6). The 12 °

delta wing has a cross section defined by an angle of

9.327 °, set at an angle of attack of 1° relative to the

fuselage ccnterline. The delta wing begins 584.6 in.

(14.8 m) from the nose. Tile configuration geome-
try is defined by the following equations where the

coordinate positions are defined in figure 5.6(b):

/" 61in. )R = min _,x_,61 in.

yo = -24.5837 in.

Ybw=Yo-(x--405in.) tan(1 ° ) Zbw=Zle

Yle = Ybw Zle = (x -- 405 in.) tan(12 °)
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Yru=2yo -- Ybw

]=0

where

Ztw _/R2 _ y2tw

2[ tan(l°)]
t_) JL

The flow conditions are

2tl_c = 24.5

L = 1371 in. (34.8 In)

T_ = 490°R (272 K)
cx=l °

Re = 12 000/in. (4.7 × 106/m)

Tw = 2470°R (1372 K)
Pr = 0.72

For high Mach number flows at large Reynolds

numbers, the viscous region becomes extremely thin;

thus calculation of flow fields around realistic geome-

tries becomes difficult. The airplane body has a num-

ber of discontinuous changes in the surface geome-

try, which have made calculations of flow fields with
traditional numerical methods difficult. Numerical

stability problems are often encountered at these lo-

cations. In the previous study by Richardson and

Morrison, the thin-layer Navier-Stokes (NS) equa-

tions were solved with an implicit finite-volume up-
wind scheme to simulate the flow field.

The NS solution (Richardson and Morrison 1987)
was calculated at 52 streamwise stations, with the

numerical grid at each cross section containing 65 × 65

points. The calculation of the PNS solution with an

explicit space marching scheme requires the defini-

tion of approximately 50 000 to 200 000 streamwise
stations. At first, solution to this problem was at-

tempted with the same numerical grid as the previ-
ous study, by interpolating (the cross section grids)
between the 52 streamwise stations to obtain the in-

termediate stations. This grid development proce-

dure was satisfactory for space marching the PNS

equations until the apex of the delta wings was en-

countered on the fuselage. The point distribution

and the orthogonality of the numerical grid at the

body surface required severe changes in the numer-

ical grid in the streamwise direction at the root of

the delta wing. The grid points to be used in defin-

ing the wing surface were collected at the stream-
wise station immediately before the apex of the delta

wing. All these points were distributed on the wing
surface at the next station downstream. Moving all

the points onto the wing at one time and requiring

the interior domain to be orthogonal at the surface

required a large movement of the numerical grid in

physical space between these two stations. The se-

vere streamwise change in the numerical grid around

the wing region was difficult for the space marching

scheme to handle with realistic space marching step

sizes. Note that the large streamwise spacing used in

the NS calculation effectively smooths out any sharp

changes in the streamwise geometry and the develop-

ment of the wing. Because of the above problems, a

different gridding procedure was developed to handle

the development of the wing by smoothly adjusting

the physical movement of the numerical grid.

The new cross flow numerical grids used for this

case were formed with algebraic stretching functions

(eq. (4.1)) to cluster the grid at the body surface

(fig. 5.7). No attempt was made to make the nu-
merical grid orthogonal at the surface. The point

distribution on the outer computational boundary

and the body surface was controlled in an attempt

to minimize the streamwise changes in the numerical

grid. The outer computational boundary was a 7°

cone until the wing had grown large enough to com-

press the numerical grid to 10 percent of the height

of the grid along the symmetry line. After this point

had been reached, the outer boundary was based on
the linear combination of two cones: a 7° cone at

the symmetry plane and a cone large enough to in-

clude the leading edge of the wing plus 10 percent

of the computational domain at the symmetry line.

The point distribution on the outer boundary was

stretched circumferentially so that the points were

clustered along the plane bisecting the wing's lead-

ing edge. The body point distribution before the

wing is divided into two regions. A constant angular
point spacing is used above and below the location

where the apex of the delta wing eventually appears.

Where the delta wing eventually emerges from the

fuselage is defined by three points spaced 0.05 ° apart

(fig. 5.7). These three points are used to define the
leading edge of the delta wing. The initial point spac-

ing on the top and bottom of the wing is equal to the

point spacing at the leading edge of the wing. As the

wing grows in size, the points on the body surface are
rotated one at a time onto the wing in a continuous

fashion. The amount of rotation is controlled by a

ratio of the cross section body and wing perimeters.

When 16 points have been rotated onto both the top
and the bottom of the wing, the point spacing on

the wing begins to increase and the rotation stops.
The point spacing for the three points describing the

leading edge of the delta wing remains fixed for the

complete length of the wing.

The computational grid for half of a crossflow

plane was defined by 45 points in the u-direction

(away from the body surface) and 63 points in _-
direction (circumferential). Three crossflow grids are

shown in figure 5.7. The plots of the numerical grid

show every fifth line in the radial direction. The

39



symmetryboundaryconditionrequired4 of the63
pointsin the C-direction.At the final station, the
distributionof pointsin the _-directionwasasfol-
lows: 16 pointson the upper fuselage,12points
on the lowerfuselage,and32 pointson the wing.
The outercomputationalboundaryat the symme-
try planewasequalto thecrosssectionof a 7 ° cir-

cular cone. The point distribution along the outer

computational boundary was algebraically stretched

(_ = 1.3) to cluster points around the wing tip. The

stretching coefficient for the interior domain between

the body surface and the outer computational bound-

ary was adjusted to maintain the axial Mach num-

ber between 0.50 and 0.85 for the first point off the

surface on the windward symmetry line. The code

was started using free-stream conditions at 68.55 in.

(1.74 m) from the apex of the cone. The step size

was calculated from equation (3.32) using a safety

factor of 0.95 (inviscid Courant number of approx-

imately 1.9) up to 585 in. (14.9 m) downstream of
the cone apex. At this point, the wings began to

develop and the safety factor had to be lowered to

0.20 to account for the skewing of the numerical grid

and the attachment of a shock wave to the leading

edge of the wing. Once the wings began to develop,

the pressure boundary condition (eq. (3.31)) had to

be used to stabilize the surface pressure on the lead-

ing edge of the wings. The total CPU time on tile

NAS Cray 2 was over 3 hours. It took approximately
1 hour to advance the solution to the point where

the wings start, 1 hour to reach the cone-cylinder

junction, and 1 hour to reach the end of the cylindri-

cal section. This compares well with the execution
time for the NS solution of Richardson and Morrison

(1987), which took approximately 21 hours on the

Control Data Corp. VPS-32 supereomputer at NASA

Langley. The code they used executes on the VPS-32

at roughly the same speed as on the Cray 2. How-

ever, had the normal grid spacing at tile wall been
as refined as in the Richardson and Morrison com-

putation, the total execution times would have been
similar.

A numerical difficulty was encountered once the

leading edge of the wing intersected the bow shock

and moved out into the free stream (at approximately

700 in. (17.8 m) from the cone apex). A slight pres-
sure undershoot occurs for the shock captured on the

ray of points emerging from the leading edge of the

wing. The pressure undershoot eventually causes a
numerical instability. The pressure undershoot was

found to be eliminated by either lowering the value

of n8 in the flux limiter or by adding explicit smooth-

ing to the ray of points emerging from the leading

edge of the wing. The smoothing terms could then
be removed or ¢_ increased, but eventually the pres-

sure undershoot would occur again. The undershoot

is thought to be caused from the misalignment of the

grid around the shock wave adjacent to the leading

edge of the wing. The grid movement causes shock

wave misalignment with the grid and occurs because

of expansion of the outer computational boundary

and adjustment of the stretching coefficient to main-

tain the streamwise Mach number. A large enough

grid movement changes the shock position relative

to the grid points in the computational plane. The

pressure undershoot is considered to be a result of

this shock wave position change on the grid. The so-

lution presented here was calculated with an explicit

second-order smoothing term added only to the ray
emerging from the leading edge of the wing. The ex-

plicit smoothing term added to the solution at these

points is defined as

al (Ei)r_7_ + a2(Ei)(( (5.2)

where

al -- clpTp? a2 -- c2p((

The second partial derivatives of (Ei) and (p) with

respect to r] and ¢ were approximated using second-

order central differencing. The explicit smoothing

was applied after the 700-in. (17.8-m) station using
a coefficient of cl = c2 = 0.002.

The PNS results calculated in this study were

compared with Richardson and Morrison's (1987) NS

results. To compare the PNS finite-difference solu-

tion directly with the NS finite-volume results, the
cell center locations had to be calculated for the NS

solutions. Pressure, temperature, and axial velocity

profiles at the windward symmetry plane are com-

pared at three stations in figures 5.8, 5.9, and 5.10.

The profiles agree favorably with respect to values

before and after the shock, surface values, and pro-

file shape. Slight differences in the various profiles

can be partly attributed to the different point spac-
ing used in the two calculations, the different nu-

merical integration methods used, and the different

equation set solved. The first station (256 in. (6.5 m),

part (a) of each figure) is on the forward part of the
cone, before the wings appear. The pressure, tem-

perature, and velocity profiles compare favorably be-

tween the two methods. The second station (767 in.

(19.5 m), part (b) of each figure) is 11 in. (0.3 m)

downstream of the cone-cylinder junction. An ex-

pansion wave begins to propagate into the flow field

away from this junction to expand the flow around

the cone-cylinder corner. The comparison of pressure

profiles (fig. 5.8(b)) shows that in the NS solution,

the expansion has propagated farther away from the

body and is more rounded than the PNS solution.

The rounding of the expansion wave can be partially
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attributed to the upstreaminfluencepermittedby
theNSequations.ThePNSsolutiondoesnotround
thewavesinceit doesnot feeltheeffectof thecor-
ner until it is reached.Also, the largestreamwise
spacingusedin the NScalculation,approximately
27in. (0.7m), effectivelysmoothsout thebeginning
of the expansionwave.The PNSsolutionpredicts
aslightlyhighermaximumtemperature(fig.5.9(b)),
whilegoodagreementisobservedbetweentheaxial
velocitydistributions(fig.5.10(b))at thesecondsta-
tion. Thethird station(1304in. (33.1m), part (e)
of eachfigure)is neartheendof the airplane.Thc
strengthof the outerbow shockwasweakenedby
theexpansionof theflowon:Lothecylindricalbody.
Slightlydifferentshocklocationsarepredictedbythe
twocalculationswhilethesurfacepressureisinagree-
ment(fig.5.8(c)).ThePNSsolutionpredictsasmall
drop in pressureoutsidethe edgeof the boundary
layerwhichisnotpredictedin theNSsolution.This
dropinpressurecouldbecausedbytheturningofthe
flowin thecrossflowplanenearthesaddlepointon
thesymmetryplane,asdiscussedsubsequently.The
numericalgridusedin thePNScalculationscontains
almosttwiceasmanypointsonthelowerpartof the
fuselagesurfaceasthenumericalgridusedin theNS
calculations.The resolutionof the numericalgrid
usedin the NS calculationaroundthe lowerbody
maynot havebeenadequateto resolvethis feature.
ThePNSsolutionconsistentlypredictsahighermax-
imumtemperaturein theboundarylayer(fig.5.9(c)).

Thesurfacepressureson thewingarecompared
in figure5.11.A slightdifferencebetweensolutions
isobservedtowardthemiddleof thewing.A portion
of this differencemay be attributed to the more
accuratepressureboundaryconditionusedin this
studyor thedifferencein modelingtheleadingedge
of thewing. A solutionpoint is locatedalongthe
leadingedgein thePNScalculationwhilein theNS
calculationtheleadingedgeisbetweentwocells.The
pressurecontoursarecomparedin figures5.12,5.13,
and5.14,using16identicalcontourlevelsfor each
station. The PNSsolutionmoresharplycaptures
the bowshockdueto the morerefinedgrid at the
shocklocation.ThePNSpredictionofthebowshock
locationagreeswith theNSsolution.Theouterbow
shockandthedecreasein thepressurelevelsaround
the conefor flow at an angleof attackareclearly
definedin the pressurecontourat station256in.
(6.5m) for the PNSsolution(fig.5.12). Thebow
shock,expansionwave,delta-wingshock,andchange
inpressurearoundtheconecircumferenceareshown
for thePNSsolutionat station767in. (19.5m) in
figure5.13.Thepressurecontourat station1304in.
(33.1m) (fig. 5.14)showsthe pressureincreasing
fromthebodytothebowshockandthehighpressure

regioncreatedaboveandbelowthewingimmediately
inboardthecornershock.

Thedetailsoftheflowfieldin thecrossflowplane
canbeinvestigatedusingprojectionsof thevelocity
vectorsin theappropriatecoordinateplane.Forlo-
cationscloseto thebody,theCartesianplanenormal
to thebodycanbeusedto visualizetheflowfieldin
thecrossflowplane.TheCartesian crossflow veloc-

ity vectors are shown in figure 5.15. The flow field

next to the lower surface of the fuselage is shown in

figure 5.16. Note the high crossflow velocity around

the corner of the fuselage-wing junction, the vortex

located underneath the fuselage-wing junction, and

the saddle point located on the symmetry line. The

pressure drop outside the edge of the boundary layer

in the PNS solution (fig. 5.8(c)) could be caused by

the turning of the flow near this saddle point. The
Cartesian crossfiow velocity vectors for the middle

of the delta wing (fig. 5.15) suggest a strong reverse
flOW.

The Cartesian plane projection of the velocity

vectors on the delta wing is misleading since the in-

viscid flow field on an isolated delta wing is conical.

To view the flow field on the delta wing, a conicM co-

ordinate system centered at x = 658.9 in. (16.7 m),

y = -29.02 in. (0.7 m), z = 53.96 in. (1.4 m) on the

leading edge of the delta wing was used to project

the velocity vectors onto a conical plane. The loca-

tion of the conical coordinate system was obtained by

extending a line along the lower wing-fuselage junc-
tion until it intersected the leading edge. The use

of a conical plane to observe the crossflow velocity

vectors on the wing is an attempt to examine the
crossflow in a more natural plane. Note that differ-

ent locations of the conical coordinate system yield

slightly different results. The conical coordinate sys-
tem defined above was selected because it represents

a projection plane that is normal to the leading edge

and the fuselage-wing junction. The conical veloc-

ity vectors along the leading edge are shown in fig-

ure 5.17. The leading edge shock wave and the flow

separation on the upper and lower surfaces are ap-

parent from the velocity profiles. The flow separates

at approximately _z _ 7.2 ° on the top surface and at
0z _ 6 .20 on the lower surface. The conical velocity

vectors along the middle of the wing span are shown
in figure 5.18. Note that the scaling factor for the

magnitude of the velocity vectors has doubled from

figure 5.17. The separated flow on the lower surface

has reattached at approximately t_z _ 4.6 °. The flow

on the upper surface is more complicated. The flow
is reattached to the upper surface at 0z _ 5.8 °, and

the flow separates a second time at approximately

0z _ 5.5 ° with reattachment at 0z _ 4.5%
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The shockwavesin the crossflowplaneconsist
of a bow shock,leadingedgeshock,and a corner
shock.Thecornershockis similarto theshockwave
structureobtainedfor supersonicflowin the corner
of intersectingwedges(WestandKorkegi1972).The
bowshockand the leadingedgeshockof the wing
do not intersect,but arejoinedby a third corner
shock.Thecompressioncornerformedbythecone-
delta-wingjunctionis similarto thecornermadeby
twowedges.Theexpansionaroundthecone-cylinder
junctionweakensthebowshockandcomplicatesthe
flowfieldaroundthecornershock.Theconicalcross-
flowMachnumbercontours(fig. 5.19)areparallel
with the cornershockandindicatethat the corner
shockis essentiallyconical.The pressurecontours
(fig. 5.20)and thedensitycontours(fig. 5.21)show
thecomplicatedcornershockwavestructurein the

crossflowplane. A crossflowshockwaveis shown
bythecollectionofcrossflowMachnumbercontours,
pressurecontours,anddensitycontourson theupper
wingsurfacecenteredat approximatelyOy _ -0.5 °,
Oz _ 5.5 °. The interaction of the expansion wave

has diffused the effect of the refracted leading edge

and bow shock wave shown in the pressure contour

at station 767 in. (19.5 m) (fig. 5.13).
To demonstrate the complete flow field more

clearly, the pressure and Mach number contours are

shown in color in figures 5.22 and 5.23. The sepa-

rated flow on the wing and the vortex underneath the

wing-fuselage junction can easily be seen in the color

Mach number contour. The high pressure region in-

board of the corner shock and the gradual pressure

decay to the body surface from the outer shock wave

are shown in the pressure contour.

Shock wave

Figure 5.1. Hypersonic flow over a cone at an angle of attack.
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Figure 5.6. Generic airplane configuration.

45



<

em

I
2 q 6

Apex angle, deg

(a) x = 256 in. (6.5 m).

2 q 6

Apex angle, deg

(b) z = 767 in. (19.5 m).

-1

-3

-5

-7 1 I I
0 2 q 6 8 10

Apex angle, deg

(c) x = 1304 in. (33.1 m).

Figure 5.7. Computational grids for three crossflow planes of the airplane.

46



J

'3

30

28

26

24

22

20

0

PNS, explicit upwind
NS, Richardson & Morrison (1987)

I I i I i l , I , I ,

.002 .004 .006 .008 .010 .012

Pressure, p

(a) x = 256 in. (6.5 m).

'3

"d

9O

80

70

6O

t r

-----,w PNS, explicit upwind *

• NS, Richardson & Morrison (1987) _ ,_

.004 .006 .008 .010

i !

.002 .012

Pressure, p

(b) x = 767 in. (19.5 m).

140

._ 120

100

80

L

60

.001

I

.002

987)

.003 .004 .005 .006

Pressure, p

(c) x = 1304 in. (33.1 m).

Figure 5.8. Comparison of computed pressure profiles on the windward symmetry plane. Moc = 24.5; Re = 12000/in.

(4.7 x 106/m); a = 1°. (1 in. = 0.0254 m.)

47



"d

Z

30

28

26

24

22

2O
0

PNS,explicitupwind
* NS,Richardson&Morrison

(1987)

• • • 6

| ! . ! , i _ i , i

5 10 15 20 25

Temperature,T

(a) x = 256 in. (6.5 m).

30

Z

90

70

60

0

PNS, explicit upwind

NS, Richardson & Morrison

(1987)

5 10 15 20

Temperature, T

(b) z = 767 in. (19.5 m).

25

140

._ 120

,_ 100

80

PNS, explicit upwind

NS, Richardson & Morrison

(1987)

60 ' "............ 7"'-±:'_" _ _"¢ ¢" ¢" _ ¢" - " " '

0 5 10 15 20 25

Temperature, T

(c) x = 1304 in. (33.1 m).

Figure 5.9. Comparison of computed temperature profiles on the windward symmetry plane. Moo = 24.5;

Re = 12000/in. (4.7 × 106/m); c_ = 1°. (1 in. = 0.0254 m.)

48



30

"d

Z

28

26

24

22

20

0

PNS, explicit upwind

NS, Richardson & Morrison (1987)

, I . I i I _ I .

.2 .4 .6 .8

Velocity, u

(a) x = 256 in. (6.5 m).

1.0

80

Z

75

70

65

""-""- PNS, explicit upwind

• NS, Richardson & Morrison (1987)

60 , I . I . I . I .

0 .2 .4 .6 .8

140

Velocity, u

(b) x = 767 in. (19.5 m).

1.0

120

lOO

80

6C
0

PNS, explicit upwind

• NS, Richardson & Morrison (1987)

.2 .4 .6 .8 1.0

Velocity, u

(c) x = 1304 in. (33.1 m).

Figure 5.10. Comparison of computed axial velocity profiles on the windward symmetry plane. Mc_ = 24.5;

Re = 12000/in. (4.7 x 106/m); a = 1°. (1 in. = 0.0254 m.)

49



.010

.0O8

.006

.004

.002

0
50 200

rl rl [] []

[] A

t_ NS, Richardson & Morrison (1987)
, I ..... , I i

100 150

Wing span, in.

Figure 5.11. Comparison of computed surface pressures on the wing at station 1304 in. (33.1 m). M_ -- 24.5;

Re = 12000/in. (4.7 x 106/m); a = 1% (1 in. = 0.0254 m.)

50



-2

-4

-6

I
-6 -4 -2 O 2 4

0z, deg

(a) NS solution (Richardson and Morrison 1987).
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Figure 5.12. Comparison of computed pressure contours at station 256 in. (6.5 m). Moo = 24.5;
Re = 12000/in. (4.7 × 106/m); c_= 1°.
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Figure 5.13. Comparison of computed pressure contours at station 767 in. (19.5 m). Mc¢ = 24.5;

Re = 12000/in. (4.7 × 106/m); c_ = 1°.
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Figure 5.14. Comparison of computed pressure contours at station 1304 in. (33.1 m). M_ = 24.5;
Re = 12000/in. (4.7 x 106/m); c_ = 1°.
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Figure 5.15. Cartesian crossflow velocity vectors at station 1304 in. (33.1 m). Moo = 24.5;

Re = 12000/in. (4.7 x 106/m); a = 1°.
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Figure 5.16. Cartesian crossflow velocity vectors on the windward side of the fuselage at station 1304 in. (33.1 m).
Moc : 24.5; Re = 12000/in. (4.7 x 106/m); a = 1°.
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Figure 5.17. Conical crossflow velocity vectors near the leading edge of the delta wing at station 1304 in. (33.1 m).
Moc = 24.5; Re = 12000/in. (4.7 × 106/m); a = 1%
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Figure 5.i8. Conical crossflow velocity vectors on the delta wing at station 1304 in. (33.1 m). M_ = 24.5;
Re = 12000/in. (4.7 × 10e/m); a = 1°.
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Figure 5.19. Conical crossflow Mach number contours at Station 1304 in. (33.1 m). Mc¢ = 24.5;

Re = 12000/in. (4.7 × 10S/m); c_ = 1°.
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Figure 5.20. Computed wing pressure contours at station 1304 in. (33.1 m). M_¢ = 24.5;
Re = 12000/in. (4.7 × 106/m); a = 1°.
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Figure 5.21. Computed wing density contours at station 1304 in. (33.1 m). Moc = 24.5; Re = 12000/in. (4.7 x 106/m);
ol=l °.
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Figure 5.23. Computed Mach number contours at station 1304 in. (33.1 m). M_c = 24.5;
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6. Concluding Remarks

A new algorithm for solving the three-dimensional

parabolized Navier-Stokes (PNS) equations has been

developed. The new algorithm is an explicit finite-
difference scheme which uses upwind flux approxi-

mations for the pressure and convection terms and

central differencing for the viscous and heat flux

derivatives. The upwind flux approximations for

the pressure and convection terms are based on
the solution of an approximate Riemann problem

(RP) for the PNS equations using a modification of

the method proposed by Roe for steady supersonic
flow of an ideal gas. Roe's method is extended to

solve an approximate RP in E* space for the three-

dimensional PNS equations transformed into gener-

alized coordinates and to include the subsonic pres-

sure splitting technique of Vigneron. The algorithm

is shown to capture strong shock waves without addi-

tional damping terms that depend on adjustment of

solution-dependent coefficients. The execution time

for the new algorithm is approximately the same as

a central difference code, since the upwind differenc-

ing of the pressure and convection terms uses ap-

proximately 50 percent of the central processing unit
time and doubles the Courant-Friedrichs-Lewy sta-

bility limit. The algorithm has proven to be efficient

for use on vectorized computing machines since all

inner and some outer do loops are vectorized.

The new algorithm is demonstrated for two- and

three-dimensional supersonic and hypersonic lami-

nar flow test cases. The test cases agree favorably

with both experimental data and numerical results

obtained using other numerical methods. Accurate

flat plate boundary layer profiles are calculated us-

ing the new algorithm started from free-stream initial
conditions. Previous numerical calculations by oth-

ers of hypersonic flow over a ramp have demonstrated

nonphysical pressure oscillations in the solution. The

new algorithm clearly resolves the pressure field for

the ramp without this difficulty. A complicated in-
let flow field containing intersecting and reflecting

shock waves is computed and demonstrates the ro-

bust shock capturing obtained with upwind flux ap-

proximations of the pressure and convection terms.

Multidimensional numerical algorithms using up-

wind differencing of the pressure and convection

terms have been applied with additional dissipation
terms to eliminate a loss in accuracy at certain loca-

tions in the flow field. The flow field over a cone at

an angle of attack of 24 ° is computed using a combi-

nation of upwind and MacCormack differencing for

the pressure and convection terms. This combination
scheme eliminated a loss of accuracy at the symme-

try plane without additional numerical dissipation.

The flow field about a generic hypersonic airplane at

Mach 24.5 and an angle of attack of 1° is calculated

using the new algorithm. This flow field has not been

previously solved using a noniterative space marching

method. A special algebraic grid generation routine
is used which eliminated difficulties associated with

the numerical grid at the apex of the delta wings.

In summary, the numerical results obtained with the

new algorithm more clearly and accurately resolve

the flow field features than previous results obtained

with other methods for solving the PNS equations.

The research performed in the course of this study

produced the following additional significant results:

1. The eigenvectors were determined for use in

solving the approximate RP in E*-space for
the three-dimensional PNS equations trans-

formed into a generalized coordinate system

and including Vigneron's splitting of the sub-

sonic pressure gradient.
2. The difficulty associated with applying Roe's

method in the subsonic region with a non-

iterative space marching scheme for solving

the PNS equations including Vigneron's pres-
sure splitting procedure was identified and

overcome.

3. A simple method was developed for modifying

the one-sided differencing in MacCormack's

method into an upwind differencing scheme.
4. An increase in the stability of the scheme

was obtained by solving for the value of

Vigneron's pressure splitting coefficient using

a cubic equation in terms of the dependent
flux vector.

NASA Langley Research Center
Hampton, VA 23665-5225
November 15, 1990
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Appendix A

Generalized Transformation

A general transformation was used in this study
to transform the governing equations from the phys-

ical domain (x,y, z) to the computational domain
(_, r/, _). The transformation is made so that the gov-
erning equations can be solved on a uniformly spaced
computational grid. One of the advantages of gener-
alized transformation is that it eliminates the need

to interpolate the body surface onto the numerical
grid. The transformation is of the following form:

r/= r/(z, y, z)
¢ = ¢(x, y, z)

(A.1)

The derivations of the formulas for the metrics

(_x, r/x, r/y, r/z, _x, _y, _z)of a generalized transfor-
mation are given in the text by Anderson, Tannehill,
and Pletcher (1984). The formulas for the metrics of

the above transformation are

_:_ = J(y_z_ - yiz_)

_ = _z = o

r/x = -J(y_z¢ - yiz_)

_?y= Jx_z¢

r/z = -Jx_y¢

¢x = J(y_z, - y,_z¢)

_y = -Jx_zu

_ = Jx_y_

(A.2)

where the subscripts indicate differentiation and J is
the Jacobian of the transformation

1

J = x_ (yvzi - yizv) (A.3)

Gielda and McRae (1986) have shown that for
the PNS equations solved by MacCormack's (1969)
method, the geometric conservation law (GCL) terms
are not zero for any combination of possible differ-
encing of the metrics. Therefore, the metrics are cal-
culated once for each new space marching step us-

ing a single differencing approximation. The partial
derivatives of x, y, and z with respect to 77and ¢ are
numerically formed using second-order central differ-

ences. The partial derivative x( is approximated with
a first-order backward difference.
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Appendix B

Eigenvalues, Eigenvectors, and Wave Strengths for the Three-Dimensional PNS

Equations

The formulas used in constructing the approximate Riemann solution are given in this appendix. The

formulas are valid for a Riemann problem (RP) constructed in either the _-rl or the _-_ plane when the

appropriate metrics are used. The index j is used to represent the points in the plane in which the RP is

being solved. The determination of the eigenvalues and the eigenvectors shown here for the three-dimensional

inviscid PNS equations in generalized coordinates was accomplished in part using the symbolic manipulation

language MACSYMA.

B.1. Square-Root Averaging

The matrix ._ defined by equation (3.7) is formed from square-root-averaged variables so that conservative

properties are maintained. The square-root-averaged variables result from averaging a special parameter vector.

The parameter vector p has properties which not only maintain conservation but also simplify the matrix

algebra used in determining the eigenvalues and eigenvectors (see Roe 1981). The averaged components of p

are defined as the square-root-averaged Cartesian velocities and enthalpy. The definition of p is

I ! I II T_

pj = 1, U j, Vj, W j, hj ] (B.1)

where pl, u/, v _, w _, h r are the original unaveraged density, Cartesian velocities, and enthalpy. The square-

root-averaged velocities and enthalpies are

0.s(p2,;+l + p2j) + u;

uj+½ = 0.5(pl,j+l + Pl,j) -- Rj+½ + 1

!

%+½V}+ 1 + Vj
V. 1 --

3+_ Rj+ 1 + 1

+
wj+½ = Rj+½ + 1

!

+ hj
hj+½ = Rj+½ + 1

(B.2)

where the first subscript of p indicates the vector component. Unless otherwise stated, all the variables that

are defined in the following are understood to be at j + _ and are formed using the above defined square-root-

averaged variables.

B.2. Metrics

The metrics are defined so that if the nonmodified flux is forward (so the modified flux term contains

elements based on the positive eigenvalues) and all the eigenvalues are positive, the resulting difference is

backward. This happens if we use the metrics at j + 1 to form df + and at j to form df-. For example, if the
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RP isbeingsolvedin_-77plane,themetricswouldbedefinedas

r_xJj+½ ---- -J- m

ny j+½ fly-Ym
_?z

nz j+½ --J m

(B.3)

where m = j + 1 for df + and m = j for df-. For the _-_ plane, fl would be replaced by _ and the differencing

would be done in the other plane.

B.3. Eigenvalues

The eigenvalues for the three-dimensional, inviscid PNS equation set in generalized coordinates are

)_1 --
--a2 -- v/a2 2 - 4ala3

2al

A2 = A3 = A4 = -
u

(B.4)

where

--a 2 + _/a 2 - 4ala3

2al

= nxu + nyv + nzw

al = w(u 2-c 2)+7(1-w)u 2

a 2 = (w + 1)(-9u + nxc 2) - 7(1 -- w)Ou

a3 = 02 _ c2(n 2 + n_ + n 2)

c2 = (?- l) [h- _(u2 + v2 + w2) 1

and w is Vigneron's (1978) coefficient and 7 is the ratio of specific heats.

B.4. Eigenvectors

The eigenvectors for the three-dimensional, inviscid PNS equations set in generalized coordinates are

e4 --

1

u + vgP_

v - nyuRn
W -- nzURn

h

2w2|
h+ =J

1

u - vgRp
65= v + nyuRp

w + nzURp
h

07-2nzh

2nyh |
_h J

(B.5)
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where
= nyw - nzv n2t = n 2 + n 2

q2 = u 2 + v 2 + w 2 vt = v- nxU

Vg = wf; - nxu _2 = a2 _ 4ala 3

=(l-w) [(7-1)u_+nzc 2]Af

D= 2{w[(u2-c2)n 2 +v 2] +"/u(i-w)(un2-nxvt)}

ttn=-- Rp-
D D

B.5. Wave Strengths

The wave strengths can be determined by solving equation (3.11). This results in the following:

h_E; - aE_
a2 = 2h

S= n2tuAE_ + vg (nyAE_ + nz AE_)

n2u 2 + VgVt

ny AE_ - nz AE_ - _S

a3 = 2n2t h

ot4 --_
a3w -- AE_ + a2 + S

o_1 _-
(z:- 2¢)(s - 2_4)

2C + 2/:(n2u 2 + VgVt)

C_5 = _ -- O_1 -- 20_4

^* J)mAE_ = (ES+1- _*

(B.6)
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